Featured Research

from universities, journals, and other organizations

Membrane Fusion In The Fast Lane

Date:
October 20, 2006
Source:
Max-Planck-Gesellschaft
Summary:
Max Planck scientists develop new methods for the controlled initiation of membrane fusion and its observation with high temporal resolution in the microsecond regime.

Confocal microscopy images of lipid vesicles containing two different fluorescent dyes: (a) Two vesicles before fusion (equatorial section); (b) Vesicles fused by applying a short electric pulse; and (c) Three-dimensional image of a two-domain vesicle produced by fusion of two membranes with different composition.
Credit: Image : Max Planck Institute of Colloids and Interfaces

Using fast digital imaging, scientists from the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany, together with researchers from Collège de France, have succeeded in developing two different protocols by which one can initiate the fusion process in a controlled manner and observe the subsequent fusion dynamics with a temporal resolution in the microsecond regime. For both protocols, the opening of the fusion necks was found to be very fast, with an average expansion velocity of centimetres per second. This velocity indicates that the initial formation of a single fusion neck can be completed in a few hundred nanoseconds. (Proceedings of the National Academy of Sciences of the USA 103, 15841-15846, October 24, 2006).

The process of membrane fusion is essential for the structure and dynamics of all cells in our bodies. Fusion is indispensable for intracellular vesicle traffic, which sustains the compartmental organisation of cells. Likewise, membrane fusion is the basic molecular process that controls the communication between cells via the secretion of hormones, neurotransmitters, and growth factors. Furthermore, fusion processes are also crucial for the interactions between our cells and various pathogens such as viruses and bacteria. However, in spite of the ubiquity of membrane fusion, many aspects of this process have remained rather controversial. This situation reflects the absence of well-defined protocols by which one can induce fusion in a controlled manner and subsequently study its dynamics with high temporal resolution.

In order to clarify the dynamics of the fusion process in more detail, scientists from the Max Planck Institute of Colloids and Interfaces developed two different protocols for the fusion of unilamellar vesicles, which had a diameter of tens of micrometers but consist of only a single lipid membrane with a thickness of about four nanometers. Even though such a membrane is much thinner than the optical resolution limit, one can observe its shape using different methods of optical microscopy such as phase contrast and confocal microscopy, see Figure 1. The two protocols provide two different methods of bringing a pair of unilamellar vesicles into close contact, to initiate the fusion of their membranes in a controlled manner and to study the subsequent fusion dynamics with high temporal resolution.

In the first protocol, artificial fusogenic molecules (a liposome whose outer wall contains molecules that cause cell fusion) or ligands, synthesized by the collaborators from Collège de France, were incorporated into the lipid membranes. Two unilamellar vesicles were aspirated by two glass micropipettes. Close proximity of the vesicle membranes was achieved by displacing these micropipettes. Membrane fusion was subsequently induced by the local addition of ions that form a complex between two fusogenic molecules embedded in the opposing membranes. In the second protocol, two lipid vesicles were brought into contact by alternating electric fields. Once close contact was established, membrane fusion was induced by exposing the vesicles to an additional electric pulse. Such a pulse leads to the formation of membrane pores in the opposing membranes, which subsequently fuse in order to dispose of the edges of the pores.

Both for ligand-mediated fusion and for electrofusion, the dynamics of fusion was observed using a fast digital camera with an acquisition rate of 20 000 frames per second, which corresponds to a temporal resolution of 50 microseconds. "Since previous direct imaging studies of membrane fusion were limited to time scales that exceed tens of milliseconds, the new experiments improved the temporal resolution by three orders of magnitude and revealed that the fusion process is surprisingly fast", says Rumiana Dimova, group leader in the Max Planck Institute of Colloids and Interfaces, and one of the participating scientists.

Indeed, only a few hundred microseconds after the initiation of the fusion process, the fusion neck connecting the two vesicles has already reached a diameter of a couple of micrometres as shown in Figure 1(b). This implies that the fusion neck has an average expansion velocity of centimetres per second and that the initial formation of the fusion neck can be completed within about 200 nanoseconds. This is in good agreement with recent computer simulations of tension-induced fusion. In this way, the Max Planck researchers have managed to bridge the gap between theoretical predictions and available experimental knowledge about the fusion process.

The experimental fusion protocols developed in the present study can be applied to other biomimetic systems and can be used to construct new ones. Particularly interesting systems, which can be studied in this way, are mixed membranes containing both lipids and fusogenic proteins such as SNAREs. One example for the construction of new biomimetic systems is provided by the formation of large vesicles with several intramembrane domains as shown in Figure 1(c). Another example consists of vesicles that contain different chemical reactants. The fusion of such vesicles initiates the corresponding chemical reactions in these rather small compartments and might be useful in order to synthesize new nanomaterials. In general, controlled membrane fusion has many potential applications in bioengineering, pharmacology, and medicine.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "Membrane Fusion In The Fast Lane." ScienceDaily. ScienceDaily, 20 October 2006. <www.sciencedaily.com/releases/2006/10/061019163603.htm>.
Max-Planck-Gesellschaft. (2006, October 20). Membrane Fusion In The Fast Lane. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2006/10/061019163603.htm
Max-Planck-Gesellschaft. "Membrane Fusion In The Fast Lane." ScienceDaily. www.sciencedaily.com/releases/2006/10/061019163603.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins