Featured Research

from universities, journals, and other organizations

Membrane Fusion In The Fast Lane

Date:
October 20, 2006
Source:
Max-Planck-Gesellschaft
Summary:
Max Planck scientists develop new methods for the controlled initiation of membrane fusion and its observation with high temporal resolution in the microsecond regime.

Confocal microscopy images of lipid vesicles containing two different fluorescent dyes: (a) Two vesicles before fusion (equatorial section); (b) Vesicles fused by applying a short electric pulse; and (c) Three-dimensional image of a two-domain vesicle produced by fusion of two membranes with different composition.
Credit: Image : Max Planck Institute of Colloids and Interfaces

Using fast digital imaging, scientists from the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany, together with researchers from Collège de France, have succeeded in developing two different protocols by which one can initiate the fusion process in a controlled manner and observe the subsequent fusion dynamics with a temporal resolution in the microsecond regime. For both protocols, the opening of the fusion necks was found to be very fast, with an average expansion velocity of centimetres per second. This velocity indicates that the initial formation of a single fusion neck can be completed in a few hundred nanoseconds. (Proceedings of the National Academy of Sciences of the USA 103, 15841-15846, October 24, 2006).

The process of membrane fusion is essential for the structure and dynamics of all cells in our bodies. Fusion is indispensable for intracellular vesicle traffic, which sustains the compartmental organisation of cells. Likewise, membrane fusion is the basic molecular process that controls the communication between cells via the secretion of hormones, neurotransmitters, and growth factors. Furthermore, fusion processes are also crucial for the interactions between our cells and various pathogens such as viruses and bacteria. However, in spite of the ubiquity of membrane fusion, many aspects of this process have remained rather controversial. This situation reflects the absence of well-defined protocols by which one can induce fusion in a controlled manner and subsequently study its dynamics with high temporal resolution.

In order to clarify the dynamics of the fusion process in more detail, scientists from the Max Planck Institute of Colloids and Interfaces developed two different protocols for the fusion of unilamellar vesicles, which had a diameter of tens of micrometers but consist of only a single lipid membrane with a thickness of about four nanometers. Even though such a membrane is much thinner than the optical resolution limit, one can observe its shape using different methods of optical microscopy such as phase contrast and confocal microscopy, see Figure 1. The two protocols provide two different methods of bringing a pair of unilamellar vesicles into close contact, to initiate the fusion of their membranes in a controlled manner and to study the subsequent fusion dynamics with high temporal resolution.

In the first protocol, artificial fusogenic molecules (a liposome whose outer wall contains molecules that cause cell fusion) or ligands, synthesized by the collaborators from Collège de France, were incorporated into the lipid membranes. Two unilamellar vesicles were aspirated by two glass micropipettes. Close proximity of the vesicle membranes was achieved by displacing these micropipettes. Membrane fusion was subsequently induced by the local addition of ions that form a complex between two fusogenic molecules embedded in the opposing membranes. In the second protocol, two lipid vesicles were brought into contact by alternating electric fields. Once close contact was established, membrane fusion was induced by exposing the vesicles to an additional electric pulse. Such a pulse leads to the formation of membrane pores in the opposing membranes, which subsequently fuse in order to dispose of the edges of the pores.

Both for ligand-mediated fusion and for electrofusion, the dynamics of fusion was observed using a fast digital camera with an acquisition rate of 20 000 frames per second, which corresponds to a temporal resolution of 50 microseconds. "Since previous direct imaging studies of membrane fusion were limited to time scales that exceed tens of milliseconds, the new experiments improved the temporal resolution by three orders of magnitude and revealed that the fusion process is surprisingly fast", says Rumiana Dimova, group leader in the Max Planck Institute of Colloids and Interfaces, and one of the participating scientists.

Indeed, only a few hundred microseconds after the initiation of the fusion process, the fusion neck connecting the two vesicles has already reached a diameter of a couple of micrometres as shown in Figure 1(b). This implies that the fusion neck has an average expansion velocity of centimetres per second and that the initial formation of the fusion neck can be completed within about 200 nanoseconds. This is in good agreement with recent computer simulations of tension-induced fusion. In this way, the Max Planck researchers have managed to bridge the gap between theoretical predictions and available experimental knowledge about the fusion process.

The experimental fusion protocols developed in the present study can be applied to other biomimetic systems and can be used to construct new ones. Particularly interesting systems, which can be studied in this way, are mixed membranes containing both lipids and fusogenic proteins such as SNAREs. One example for the construction of new biomimetic systems is provided by the formation of large vesicles with several intramembrane domains as shown in Figure 1(c). Another example consists of vesicles that contain different chemical reactants. The fusion of such vesicles initiates the corresponding chemical reactions in these rather small compartments and might be useful in order to synthesize new nanomaterials. In general, controlled membrane fusion has many potential applications in bioengineering, pharmacology, and medicine.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "Membrane Fusion In The Fast Lane." ScienceDaily. ScienceDaily, 20 October 2006. <www.sciencedaily.com/releases/2006/10/061019163603.htm>.
Max-Planck-Gesellschaft. (2006, October 20). Membrane Fusion In The Fast Lane. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2006/10/061019163603.htm
Max-Planck-Gesellschaft. "Membrane Fusion In The Fast Lane." ScienceDaily. www.sciencedaily.com/releases/2006/10/061019163603.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) — More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) — CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) — Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com
New Corvette Can Secretly Record Convos And Get You Arrested

New Corvette Can Secretly Record Convos And Get You Arrested

Newsy (Sep. 28, 2014) — The 2015 Corvette features valet mode – which allows the owner to secretly record audio and video – but in many states that practice is illegal. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins