Featured Research

from universities, journals, and other organizations

Platinum Cages: Liposomes As Blueprints For Hollow Platinum Nanospheres

Date:
November 3, 2006
Source:
John Wiley & Sons, Inc.
Summary:
John A. Shelnutt and his team at the Sandia National Laboratories and the University of New Mexico in Albuquerque as well as the University of Georgia in Athens has developed a new technique for the production of large porous platinum nanocages with a broad spectrum of potential biomedical, catalytic, and optical applications.

It looks like lather under an electron microscope: American researchers have successfully produced porous, nanoscopic, hollow platinum spheres by using liposomes as blueprints.

Related Articles


Tiny structures made of precious metals are of interest because of their broad spectrum of biomedical, catalytic, and optical applications. Porous nanospheres, for example, are ideal for catalytic applications that require large surfaces but can work at low concentration (and consequently with little material).

Previous production methods had a disadvantage in that the spheres consisted of individual metallic nanoparticles; these were not very stable and only relatively small spheres were accessible. A team at the Sandia National Laboratories and the University of New Mexico in Albuquerque as well as the University of Georgia in Athens has now developed a clever new technique for the production of relatively large porous platinum nanocages. These spheres do not consist of individual particles, but of continuous, branched (dendritic) platinum sheets.

Liposomes are familiar to us from creams: the tiny balls of fat carry active ingredients through the skin. In the liposome that researchers working with John A. Shelnutt used as a blueprint, the mantle of fat consists of a double lipid layer. The narrow space between the two layers contains a light-activated catalyst, a tin-containing porphyrin compound. (Porphyrin frameworks are also an important component of hemoglobin.) The liposomes are placed in a solution containing a platinum salt. When these liposomes are then irradiated with light, the photocatalyst transfers electrons to the platinum ions. The resulting uncharged platinum atoms gather into tiny clumps. Once these clumps reach a certain size, they also become active and catalyze the release of more platinum atoms from the platinum salt. Atom by atom, small, flat, branched platinum structures (dendrites) form within the double lipid layer. These continue to grow until all of the platinum salt is consumed.

The important thing is to make sure that the number of tin photocatalyst molecules—and thus the initial number of platinum clumps—within the liposome double layer is very high. The resulting dendrites are then close enough to each other to grow into a network; this forms a solid but porous sphere with the same size and shape as the liposome. When the liposomes are broken up, the platinum spheres remain intact. Shelnutt, his collaborator Yujiang Song, and their team were able to produce spheres with diameters up to 200 nm. These platinum spheres aggregate into foam-like structures.


Story Source:

The above story is based on materials provided by John Wiley & Sons, Inc.. Note: Materials may be edited for content and length.


Cite This Page:

John Wiley & Sons, Inc.. "Platinum Cages: Liposomes As Blueprints For Hollow Platinum Nanospheres." ScienceDaily. ScienceDaily, 3 November 2006. <www.sciencedaily.com/releases/2006/11/061102125426.htm>.
John Wiley & Sons, Inc.. (2006, November 3). Platinum Cages: Liposomes As Blueprints For Hollow Platinum Nanospheres. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2006/11/061102125426.htm
John Wiley & Sons, Inc.. "Platinum Cages: Liposomes As Blueprints For Hollow Platinum Nanospheres." ScienceDaily. www.sciencedaily.com/releases/2006/11/061102125426.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins