Featured Research

from universities, journals, and other organizations

Quantized Heat Conduction By Photons Observed

Date:
November 9, 2006
Source:
Academy of Finland
Summary:
In a recent experiment, to be published in Nature on Nov. 9, Dr. Matthias Meschke and professor Jukka Pekola, together with Dr. Wiebke Guichard, a coworker from French CNRS, investigated heat exchange between two small pieces of normal metal, connected to each other only via superconducting leads. The results demonstrate that at very low temperatures heat is transferred by electromagnetic radiation.

In a recent experiment, to be published in Nature on November 9, Dr Matthias Meschke and professor Jukka Pekola, together with Dr Wiebke Guichard, a coworker from French CNRS, investigated heat exchange between two small pieces of normal metal, connected to each other only via superconducting leads. The results demonstrate that at very low temperatures heat is transferred by electromagnetic radiation.

The PICO research group is a part of the Low Temperature Laboratory at Helsinki University of Technology - TKK, Finland. The domain of interest of the PICO research group is how heat is transported in nano- and micrometer sized devices on an ordinary silicon chip at only 0.1 degrees above absolute zero.

The project is part of the Future Electronics (TULE) Research Programme of the Academy of Finland.

Generally, even experts consider that superconductors are ideal insulators as regards to usual heat conduction. These new experimental results demonstrate that at very low temperatures heat is transferred by electromagnetic radiation, much in analogy to how light is propagated, along the superconductors, and furthermore these observations show that the heat transfer rate cannot have an arbitrary value: it is limited by what is called a quantum of thermal conductance. As is often the case, this observation contradicts our experiences in daily life. Certainly, one would not see this effect for instance while cooking an egg; it is just another example of how physical laws are changing when quantum mechanics comes into play.

These experiments are quite demanding, as they have to measure the temperature of an extremely tiny piece of a metal. Any usual thermometer would not do it, as it is simply far too big. Again, only the quantum mechanics can provide a solution: nano-sized (about 100 nm in cross-section) probes make use of the quantum mechanical effect of tunneling, that is penetration of particles through a classically forbidden area. Electrical current due to tunneling probes the energy distribution, and thus temperature, of the electrons in the metal. The experiment may have seemed too easy, unless, in order to distinguish the signal from the background, the researchers had to install an "in-situ" switch into the superconducting line: this allowed them to alternatively either pass or reject the heat by electromagnetic radiation through it.

The observation demonstrates a very basic phenomenon, which has no immediate consequences for new products or applications. Yet the observation helps us to understand the fundamental transport mechanisms in nanoscale devices. This effect has implications for, e.g., performance and design of ultra-sensitive radiation detectors in astronomy, whose operation at very low temperature is largely dependent on weak thermal coupling between the device and its environment.


Story Source:

The above story is based on materials provided by Academy of Finland. Note: Materials may be edited for content and length.


Cite This Page:

Academy of Finland. "Quantized Heat Conduction By Photons Observed." ScienceDaily. ScienceDaily, 9 November 2006. <www.sciencedaily.com/releases/2006/11/061109094541.htm>.
Academy of Finland. (2006, November 9). Quantized Heat Conduction By Photons Observed. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2006/11/061109094541.htm
Academy of Finland. "Quantized Heat Conduction By Photons Observed." ScienceDaily. www.sciencedaily.com/releases/2006/11/061109094541.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins