Featured Research

from universities, journals, and other organizations

Please Exhale: New Method Detects Breath 'Fingerprint'

Date:
November 16, 2006
Source:
John Wiley & Sons, Inc.
Summary:
Swiss researchers led by R. Zenobi have developed a mass-spectrometric method to quickly and easily obtain a proper fingerprint of breath, including the quantitative detection of large, nonvolatile compounds. Breath analysis has some advantages for clinical diagnosis, for example it requires no puncture.

When we drink alcohol, its “flag” precedes us, and enjoyment of large amounts of garlic or onion can often be detected by others the next morning. However, our breath does not only betray what we have consumed; some diseases also produce telltale breath odors. Breath analysis has some interesting advantages for clinical diagnosis, for example, unlike drawing blood, it requires no puncture. However, it has proven to be difficult. The complexity of the equipment is considerable, the samples require complex preparation before the actual analysis can take place, and until now only small, volatile compounds have been reliably detected. Swiss researchers have now developed a mass-spectrometric method to quickly and easily obtain a proper fingerprint of breath, including the quantitative detection of large, nonvolatile compounds.

Renato Zenobi and his team at the ETH in Zurich have based their new method on quadrupole time-of-flight mass spectrometry (QTOF). In this method, molecules are electrically charged and then separated and identified according to their molecular weight. In a QTOF machine, molecules are accelerated in an electrical field. The time-of-flight component separates the molecules according to their mass-to-charge ratio. The time it takes the fragments to fly to the detector depends on their masses. The quadrupole may be used to fragment the molecules before they enter the TOF part. The instrument generates a spectrum of fragments that is characteristic of the original molecule and identifies it.

The crucial new twist to Zenobi’s method is the way the sample is inserted into the mass spectrometer. Usually, samples are first extracted and the resulting liquid is atomized with an electric field. Instead, Zenobi’s team carries out a direct droplet-droplet extraction: the breath sample is led into the electrospray array, where it crosses a stream of charged reagent drops that absorb and charge the molecules of interest. During their journey into the mass spectrometer, the droplets lose their solvent and continuously fragment until nothing is left but the charged molecules, which then proceed into the QTOF mass spectrometer. This allows the analysis to be carried out continuously over longer periods of time so that larger samples can be examined. The samples do not need to be prepared, which reduces loss. Most importantly, in contrast to current methods, the droplet components of the breath samples, which contain the larger, nonvolatile substances, are also included. This allows traces of these compounds to be detected and quantified.

The urea content of breath samples after different meals can, for example, lead to conclusions about the metabolic processes involved. Likewise, information about smokers’ metabolism of nicotine is also accessible.


Story Source:

The above story is based on materials provided by John Wiley & Sons, Inc.. Note: Materials may be edited for content and length.


Cite This Page:

John Wiley & Sons, Inc.. "Please Exhale: New Method Detects Breath 'Fingerprint'." ScienceDaily. ScienceDaily, 16 November 2006. <www.sciencedaily.com/releases/2006/11/061116101426.htm>.
John Wiley & Sons, Inc.. (2006, November 16). Please Exhale: New Method Detects Breath 'Fingerprint'. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2006/11/061116101426.htm
John Wiley & Sons, Inc.. "Please Exhale: New Method Detects Breath 'Fingerprint'." ScienceDaily. www.sciencedaily.com/releases/2006/11/061116101426.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins