Featured Research

from universities, journals, and other organizations

Magnetic Needles Turn Somersaults: Researchers Discover New Possibilities For Magnetic Storage

Date:
November 30, 2006
Source:
Max Planck Society
Summary:
Scientists at the Max Planck Institute of Metals Research in Stuttgart have discovered a new mechanism with which it is possible to use weak magnetic fields to reverse tiny magnetic structures, called vortex cores, quickly and with no losses. Up until now, very strong magnetic fields have been necessary to accomplish this, requiring highly complex technology. The new method might open up new possibilities for magnetic data storage.

Dynamical reversal of the vortex core: The upper section shows the "magnetic needles" of the vortex core, pointing down on the left and up on the right. The lower section shows these two magnetisation directions of the vortex core in two images, taken with a magnetic scanning X-ray microscope at the Advanced Light Source in Berkeley in California, USA. In the centre is the bipolar magnetic field pulse (250 MHz, 1.5 milli-Tesla at the peak) which causes the vortex core to reverse.
Credit: Image : Max Planck Institute of Metals Research in Stuttgart

Scientists at the Max Planck Institute of Metals Research in Stuttgart have discovered a new mechanism with which it is possible to use weak magnetic fields to reverse tiny magnetic structures, called vortex cores, quickly and with no losses. Up until now, very strong magnetic fields have been necessary to accomplish this, requiring highly complex technology. The new method might open up new possibilities for magnetic data storage (Nature, November 23rd, 2006).

For about ten years now, tiny magnetic structures measuring a few millionths of a millimetre have met with growing interest from the worlds of science and technology, particularly on account of their potential applications in magnetic storage. A fascinating quantum mechanical phenomenon occurs in these structures: the vortex core, which has been predicted in theory for forty years, but which experiments revealed only four years ago. In small magnetic plates, the magnetised areas often come together to form level closed magnetic circuits - these are the vortices. Imagine walking with an atom-sized compass in a vortex. The compass needle would always be level, unless you approached its centre, the vortex. There the atomic magnetic compass needles rise from the surface and a magnetic field is created over a tiny radius of around 20 atoms, the largest possible in the material.

The magnetic needles can point either up or down in the vortex core. However, if this property is to be used for magnetic storage, a way must be found to combat the enormous stability typical of vortex structures. Up to now, very high external magnetic fields of around half a Tesla were required to reverse the vortex core. That is approximately one third of the field that the strongest permanent magnet is capable of delivering.

Researchers at the Max Planck Institute of Metals Research have now found an elegant solution which reverses vortex cores much more easily. Using time-resolved magnetic scanning X-ray microscopy, developed by Hermann Stoll’s group in Professor Schutz’s department at the Institute, they have discovered a previously unknown mechanism - dynamic reversal of the vortex core. A magnetic pulse is used to build a magnetic field at right angles to the vortex, so that the whole structure is stimulated to execute a collective spin movement. As micromagnetic simulations show, this creates an opposite magnetisation at the edge of the original vortex, whereby virtually no energy is used. The result is a vortex-antivortex pair. The antivortex cancels out the original vortex which leaves just one vortex with reverse polarisation.In this way, the Max Planck scientists, together with researchers from the University of Ghent, the Advanced Light Source in Berkeley, California, the Jόlich Research Centre and the Universities of Regensburg and Bielefeld, succeeded in efficiently and deliberately reversing the vortex core with magnetic pulses that were approximately 300 times weaker, but very short.

It is possible that this reversal mechanism, which has been observed here for the first time, can be used for a completely new magnetic storage concept. The directions of the small nanoscopic magnetic needles define a digital bit that is extremely stable in the face of frequently unavoidable external factors such as heat or interference from magnetic fields. With the newly discovered dynamic effect, the vortex core is easy to reverse, with no losses and, above all, extremely quickly.

The project was supported by the Max Planck Society, the German Research Council through the "Ultrafast Magnetisation Processes" priority programme and by the management of the Office of Science, Office of Basic Energy Science at the US Department of Energy.


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "Magnetic Needles Turn Somersaults: Researchers Discover New Possibilities For Magnetic Storage." ScienceDaily. ScienceDaily, 30 November 2006. <www.sciencedaily.com/releases/2006/11/061128140601.htm>.
Max Planck Society. (2006, November 30). Magnetic Needles Turn Somersaults: Researchers Discover New Possibilities For Magnetic Storage. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2006/11/061128140601.htm
Max Planck Society. "Magnetic Needles Turn Somersaults: Researchers Discover New Possibilities For Magnetic Storage." ScienceDaily. www.sciencedaily.com/releases/2006/11/061128140601.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) — Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins