Featured Research

from universities, journals, and other organizations

Molecular Solomon's Knot: Self-organization Leads To Intertwined Molecular Rings

Date:
December 15, 2006
Source:
John Wiley & Sons, Inc.
Summary:
A team of researchers from the University of California, Los Angeles (USA), and Nottingham Trent University (UK) led by J. Fraser Stoddart have used a self-organization process to get molecular building blocks to weave themselves into a Solomon-type knot, and describe their results in the journal Angewandte Chemie.

Mosaic image of King Solomon’s knot. UCLA chemists have made, at the nanoscale, molecular interlocked rings in the shape of the knot, a symbol of wisdom.
Credit: Courtesy of Joel Lipton, from the book “Seeing Solomon's Knot,” by Lois Rose Rose

It has been a beloved symbol for centuries, prized as an ornament found in engravings and embroidery, mosaics, and tattoos—and now as a molecule: Solomon’s knot, a motif consisting of two doubly intertwined rings.

A team of researchers from the University of California, Los Angeles (USA), and Nottingham Trent University (UK) have now used a self-organization process to get molecular building blocks to weave themselves into a Solomon-type knot. “The secret of our success is the careful selection of metal ions and solvents,” revealed J. Fraser Stoddart in the journal Angewandte Chemie. “Although various molecular species compete with each other in solution, the Solomon’s knot wins out during the crystallization process simply because it crystallizes better.”

Systems consisting of individual molecular components that are not chemically bound to each other, but rather are tied together through purely mechanical means, are an enormous challenge for scientists. Stoddart, one of the pioneers in the area of supramolecular chemistry, has successfully produced a whole series of such structures.

For example, he and his team have produced a system of molecules in the form of Borromean rings, whose name is derived from an Italian family that used such interlocked rings in their crest. Stoddart’s Borromean rings are formed from an 18-component self-assembly process in which six organic pieces with two “teeth” and another six with three “teeth” grip six zinc ions, producing the mutually interlocked three ring system. Things get particularly interesting when zinc and copper ions are mixed in a 1:1 ratio: a 12-component self-assembly process ensues to interlock two rings twice over instead of three, resulting in the formation of a molecular Solomon knot, isolated upon crystallization. The four loops of the knot are stabilized by two copper and two zinc ions. In solution, there is initially an equilibrium between the different types of knots. During crystallization, the Solomon’s knot form is preferred over the Borromean rings.

“In the making of these exotic compounds, chemical bonds are being broken just as fast as they are being formed until the compound that feels the most comfortable emerges as the final product,” explains Stoddart.


Story Source:

The above story is based on materials provided by John Wiley & Sons, Inc.. Note: Materials may be edited for content and length.


Cite This Page:

John Wiley & Sons, Inc.. "Molecular Solomon's Knot: Self-organization Leads To Intertwined Molecular Rings." ScienceDaily. ScienceDaily, 15 December 2006. <www.sciencedaily.com/releases/2006/12/061215122349.htm>.
John Wiley & Sons, Inc.. (2006, December 15). Molecular Solomon's Knot: Self-organization Leads To Intertwined Molecular Rings. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2006/12/061215122349.htm
John Wiley & Sons, Inc.. "Molecular Solomon's Knot: Self-organization Leads To Intertwined Molecular Rings." ScienceDaily. www.sciencedaily.com/releases/2006/12/061215122349.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins