Featured Research

from universities, journals, and other organizations

Molecular Solomon's Knot: Self-organization Leads To Intertwined Molecular Rings

Date:
December 15, 2006
Source:
John Wiley & Sons, Inc.
Summary:
A team of researchers from the University of California, Los Angeles (USA), and Nottingham Trent University (UK) led by J. Fraser Stoddart have used a self-organization process to get molecular building blocks to weave themselves into a Solomon-type knot, and describe their results in the journal Angewandte Chemie.

Mosaic image of King Solomon’s knot. UCLA chemists have made, at the nanoscale, molecular interlocked rings in the shape of the knot, a symbol of wisdom.
Credit: Courtesy of Joel Lipton, from the book “Seeing Solomon's Knot,” by Lois Rose Rose

It has been a beloved symbol for centuries, prized as an ornament found in engravings and embroidery, mosaics, and tattoos—and now as a molecule: Solomon’s knot, a motif consisting of two doubly intertwined rings.

A team of researchers from the University of California, Los Angeles (USA), and Nottingham Trent University (UK) have now used a self-organization process to get molecular building blocks to weave themselves into a Solomon-type knot. “The secret of our success is the careful selection of metal ions and solvents,” revealed J. Fraser Stoddart in the journal Angewandte Chemie. “Although various molecular species compete with each other in solution, the Solomon’s knot wins out during the crystallization process simply because it crystallizes better.”

Systems consisting of individual molecular components that are not chemically bound to each other, but rather are tied together through purely mechanical means, are an enormous challenge for scientists. Stoddart, one of the pioneers in the area of supramolecular chemistry, has successfully produced a whole series of such structures.

For example, he and his team have produced a system of molecules in the form of Borromean rings, whose name is derived from an Italian family that used such interlocked rings in their crest. Stoddart’s Borromean rings are formed from an 18-component self-assembly process in which six organic pieces with two “teeth” and another six with three “teeth” grip six zinc ions, producing the mutually interlocked three ring system. Things get particularly interesting when zinc and copper ions are mixed in a 1:1 ratio: a 12-component self-assembly process ensues to interlock two rings twice over instead of three, resulting in the formation of a molecular Solomon knot, isolated upon crystallization. The four loops of the knot are stabilized by two copper and two zinc ions. In solution, there is initially an equilibrium between the different types of knots. During crystallization, the Solomon’s knot form is preferred over the Borromean rings.

“In the making of these exotic compounds, chemical bonds are being broken just as fast as they are being formed until the compound that feels the most comfortable emerges as the final product,” explains Stoddart.


Story Source:

The above story is based on materials provided by John Wiley & Sons, Inc.. Note: Materials may be edited for content and length.


Cite This Page:

John Wiley & Sons, Inc.. "Molecular Solomon's Knot: Self-organization Leads To Intertwined Molecular Rings." ScienceDaily. ScienceDaily, 15 December 2006. <www.sciencedaily.com/releases/2006/12/061215122349.htm>.
John Wiley & Sons, Inc.. (2006, December 15). Molecular Solomon's Knot: Self-organization Leads To Intertwined Molecular Rings. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2006/12/061215122349.htm
John Wiley & Sons, Inc.. "Molecular Solomon's Knot: Self-organization Leads To Intertwined Molecular Rings." ScienceDaily. www.sciencedaily.com/releases/2006/12/061215122349.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins