Featured Research

from universities, journals, and other organizations

Ultra-Dense Optical Storage -- On One Photon

Date:
January 19, 2007
Source:
University Of Rochester
Summary:
Researchers at the University of Rochester have made an optics breakthrough that allows them to encode an entire image's worth of data into a photon, slow the image down for storage, and then retrieve the image intact. While the initial test image consists of only a few hundred pixels, a tremendous amount of information can be stored with the new technique.

First image stored and retrieved from a single photon.
Credit: University of Rochester

Researchers at the University of Rochester have made an optics breakthrough that allows them to encode an entire image's worth of data into a photon, slow the image down for storage, and then retrieve the image intact.

Related Articles


While the initial test image consists of only a few hundred pixels, a tremendous amount of information can be stored with the new technique.

The image, a "UR" for the University of Rochester, was made using a single pulse of light and the team can fit as many as a hundred of these pulses at once into a tiny, four-inch cell. Squeezing that much information into so small a space and retrieving it intact opens the door to optical buffering--storing information as light.

"It sort of sounds impossible, but instead of storing just ones and zeros, we're storing an entire image," says John Howell, associate professor of physics and leader of the team that created the device, which is revealed in today's online issue of the journal Physical Review Letters. "It's analogous to the difference between snapping a picture with a single pixel and doing it with a camera--this is like a 6-megapixel camera."

"You can have a tremendous amount of information in a pulse of light, but normally if you try to buffer it, you can lose much of that information," says Ryan Camacho, Howell's graduate student and lead author on the article. "We're showing it's possible to pull out an enormous amount of information with an extremely high signal-to-noise ratio even with very low light levels."

Optical buffering is a particularly hot field right now because engineers are trying to speed up computer processing and network speeds using light, but their systems bog down when they have to convert light signals to electronic signals to store information, even for a short while.

"The parallel amount of information John has sent all at once in an image is enormous in comparison to what anyone else has done before."

Howell's group used a completely new approach that preserves all the properties of the pulse. The buffered pulse is essentially a perfect original; there is almost no distortion, no additional diffraction, and the phase and amplitude of the original signal are all preserved. Howell is even working to demonstrate that quantum entanglement remains unscathed.

To produce the UR image, Howell simply shone a beam of light through a stencil with the U and R etched out. Anyone who has made shadow puppets knows how this works, but Howell turned down the light so much that a single photon was all that passed through the stencil.

Quantum mechanics dictates some strange things at that scale, so that bit of light could be thought of as both a particle and a wave. As a wave, it passed through all parts of the stencil at once, carrying the "shadow" of the UR with it. The pulse of light then entered a four-inch cell of cesium gas at a warm 100 degrees Celsius, where it was slowed and compressed, allowing many pulses to fit inside the small tube at the same time.

"The parallel amount of information John has sent all at once in an image is enormous in comparison to what anyone else has done before," says Alan Willner, professor of electrical engineering at the University of Southern California and president of the IEEE Lasers and Optical Society. "To do that and be able to maintain the integrity of the signal--it's a wonderful achievement."

Howell has so far been able to delay light pulses 100 nanoseconds and compress them to 1 percent of their original length. He is now working toward delaying dozens of pulses for as long as several milliseconds, and as many as 10,000 pulses for up to a nanosecond.

"Now I want to see if we can delay something almost permanently, even at the single photon level," says Howell. "If we can do that, we're looking at storing incredible amounts of information in just a few photons."


Story Source:

The above story is based on materials provided by University Of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University Of Rochester. "Ultra-Dense Optical Storage -- On One Photon." ScienceDaily. ScienceDaily, 19 January 2007. <www.sciencedaily.com/releases/2007/01/070119094254.htm>.
University Of Rochester. (2007, January 19). Ultra-Dense Optical Storage -- On One Photon. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2007/01/070119094254.htm
University Of Rochester. "Ultra-Dense Optical Storage -- On One Photon." ScienceDaily. www.sciencedaily.com/releases/2007/01/070119094254.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Elon Musk's Hyperloop Moves Forward

Elon Musk's Hyperloop Moves Forward

Buzz60 (Feb. 27, 2015) Zipping around at 800-miles an hour is coming closer to reality in California. An entire town is being built around Elon Musk&apos;s Hyperloop concept and it wants you to stop in for a ride when it&apos;s ready. Brett Larson is on board. Video provided by Buzz60
Powered by NewsLook.com
Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
In Japan, Robot Dogs Are for Life -- And Death

In Japan, Robot Dogs Are for Life -- And Death

AFP (Feb. 25, 2015) Robot dogs are the perfect pet for some in Japan who go to repairmen-turned-vets when their pooch breaks down - while a full Buddhist funeral ceremony awaits those who don&apos;t make it. Duration: 02:40 Video provided by AFP
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins