Featured Research

from universities, journals, and other organizations

Tomography Of Protons

Date:
January 31, 2007
Source:
American Institute Of Physics
Summary:
In medical imaging, such as MRI, a planar slice of tissue can be imaged in longitudinal space. A three-dimensional image of structure in the body is built up from a composite of planar views. By analogy, physicists at the Thomas Jefferson National Accelerator Facility, in Virginia, are attempting to image the quarks inside protons, one planar slice at a time in momentum space, with the goal being the formation of a three dimensional quark map of the proton.

In medical imaging, such as MRI, a planar slice of tissue can be imaged in longitudinal space. A three-dimensional image of structure in the body is built up from a composite of planar views. By analogy, physicists at the Thomas Jefferson National Accelerator Facility, in Virginia, are attempting to image the quarks inside protons, one planar slice at a time in momentum space, with the goal being the formation of a three dimensional quark map of the proton.

In the case of proton tomography, the "microscope" consists of an intense beam of electrons which strikes a hydrogen target. An electron can scatter from a proton in many ways, but here a single collision is sought, a rather rare event called deeply virtual Compton scattering (DVCS); the incoming electron scatters by sending a virtual photon (a high energy gamma ray) out ahead of it. This scatters not from the proton as a whole, but from one of the elementary quarks that together with the gluons are the building blocks of the proton. The quark re-emits a gamma ray but does not otherwise change its identity. In this way the original target proton retains intact.

Thus the overall reaction is as follows: an electron and proton collide and out comes an electron, proton, and gamma ray; the outgoing electron and gamma are detected, and from this a lot about the status of quarks inside the proton can be gleaned. For example, the spatial position of the quark inside the proton (transverse to the direction of the virtual photon) can be related to the angles and energies of the outgoing gamma ray. It's as if a quark had been removed from one place inside the proton and then returned to another place.

In one important sense the Jefferson Lab experiment is not like medical imaging. In conventional microscopy, decreasing the wavelength of the illumination source allows one to see finer details, and this is great when looking at the interior of tumors or cells. But the structures inside a proton, quarks, are pointlike, beyond the resolving power of any probe. Therefore, the structure of protons can be probed but not that of quarks. In proton tomography, the momentum transferred (actually the square of the transfer momentum, or Q2) from electron to quark in the form of a virtual gamma ray should, up to a point, provide better spatial resolution.

Beyond a certain level, however, a larger Q2 does not get you greater resolving power. What this means is that the gamma is no longer probing the proton as a whole but rather individual quarks. The best one can do is to map out the probabilities for the presence of quarks with a certain momentum to reside at various places inside the proton; this is analogous to the "orbital" clouds used to depict the likely position of electrons in various energy levels inside atoms.

Indeed, perhaps the most important thing achieved in the present experiment is to affirm that the scattering becomes independent of Q2 above a level of about 2 gigaelectronvolt2. This says that true tomography of the proton is proceeding. DVCS events, which have been seen in other experiments before but never with the exactitude employed here, are rare. Nevertheless, the Jefferson physicists were able to muster a million of them. With a requested upgrade in electron beam energy, the researchers hope to carry their map of the proton to quarks which carry a higher share of the proton's momentum. This in turn will allow the JLab physicists to explore the origin of proton mass and spin.


Story Source:

The above story is based on materials provided by American Institute Of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute Of Physics. "Tomography Of Protons." ScienceDaily. ScienceDaily, 31 January 2007. <www.sciencedaily.com/releases/2007/01/070130122223.htm>.
American Institute Of Physics. (2007, January 31). Tomography Of Protons. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2007/01/070130122223.htm
American Institute Of Physics. "Tomography Of Protons." ScienceDaily. www.sciencedaily.com/releases/2007/01/070130122223.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins