Featured Research

from universities, journals, and other organizations

Tomography Of Protons

Date:
January 31, 2007
Source:
American Institute Of Physics
Summary:
In medical imaging, such as MRI, a planar slice of tissue can be imaged in longitudinal space. A three-dimensional image of structure in the body is built up from a composite of planar views. By analogy, physicists at the Thomas Jefferson National Accelerator Facility, in Virginia, are attempting to image the quarks inside protons, one planar slice at a time in momentum space, with the goal being the formation of a three dimensional quark map of the proton.

In medical imaging, such as MRI, a planar slice of tissue can be imaged in longitudinal space. A three-dimensional image of structure in the body is built up from a composite of planar views. By analogy, physicists at the Thomas Jefferson National Accelerator Facility, in Virginia, are attempting to image the quarks inside protons, one planar slice at a time in momentum space, with the goal being the formation of a three dimensional quark map of the proton.

In the case of proton tomography, the "microscope" consists of an intense beam of electrons which strikes a hydrogen target. An electron can scatter from a proton in many ways, but here a single collision is sought, a rather rare event called deeply virtual Compton scattering (DVCS); the incoming electron scatters by sending a virtual photon (a high energy gamma ray) out ahead of it. This scatters not from the proton as a whole, but from one of the elementary quarks that together with the gluons are the building blocks of the proton. The quark re-emits a gamma ray but does not otherwise change its identity. In this way the original target proton retains intact.

Thus the overall reaction is as follows: an electron and proton collide and out comes an electron, proton, and gamma ray; the outgoing electron and gamma are detected, and from this a lot about the status of quarks inside the proton can be gleaned. For example, the spatial position of the quark inside the proton (transverse to the direction of the virtual photon) can be related to the angles and energies of the outgoing gamma ray. It's as if a quark had been removed from one place inside the proton and then returned to another place.

In one important sense the Jefferson Lab experiment is not like medical imaging. In conventional microscopy, decreasing the wavelength of the illumination source allows one to see finer details, and this is great when looking at the interior of tumors or cells. But the structures inside a proton, quarks, are pointlike, beyond the resolving power of any probe. Therefore, the structure of protons can be probed but not that of quarks. In proton tomography, the momentum transferred (actually the square of the transfer momentum, or Q2) from electron to quark in the form of a virtual gamma ray should, up to a point, provide better spatial resolution.

Beyond a certain level, however, a larger Q2 does not get you greater resolving power. What this means is that the gamma is no longer probing the proton as a whole but rather individual quarks. The best one can do is to map out the probabilities for the presence of quarks with a certain momentum to reside at various places inside the proton; this is analogous to the "orbital" clouds used to depict the likely position of electrons in various energy levels inside atoms.

Indeed, perhaps the most important thing achieved in the present experiment is to affirm that the scattering becomes independent of Q2 above a level of about 2 gigaelectronvolt2. This says that true tomography of the proton is proceeding. DVCS events, which have been seen in other experiments before but never with the exactitude employed here, are rare. Nevertheless, the Jefferson physicists were able to muster a million of them. With a requested upgrade in electron beam energy, the researchers hope to carry their map of the proton to quarks which carry a higher share of the proton's momentum. This in turn will allow the JLab physicists to explore the origin of proton mass and spin.


Story Source:

The above story is based on materials provided by American Institute Of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute Of Physics. "Tomography Of Protons." ScienceDaily. ScienceDaily, 31 January 2007. <www.sciencedaily.com/releases/2007/01/070130122223.htm>.
American Institute Of Physics. (2007, January 31). Tomography Of Protons. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2007/01/070130122223.htm
American Institute Of Physics. "Tomography Of Protons." ScienceDaily. www.sciencedaily.com/releases/2007/01/070130122223.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins