Featured Research

from universities, journals, and other organizations

'Electric' Fish Shed Light On How Brain Directs Movement

Date:
February 2, 2007
Source:
Johns Hopkins University
Summary:
Scientists have long struggled to figure out how the brain guides the complex movement of our limbs, from the graceful leaps of ballerinas to the simple everyday act of picking up a cup of coffee. Using tools from robotics and neuroscience, researchers have found some tantalizing clues in an unlikely mode of motion: the undulations of tropical fish.

Native to South America, the glass knifefish's ability to emits weak electrical signals makes it a superb subject for the study of how the brain uses sensory information to control locomotion.
Credit: Noah Cowan/JHU

Scientists have long struggled to figure out how the brain guides the complex movement of our limbs, from the graceful leaps of ballerinas to the simple everyday act of picking up a cup of coffee. Using tools from robotics and neuroscience, two Johns Hopkins University researchers have found some tantalizing clues in an unlikely mode of motion: the undulations of tropical fish.

Related Articles


Their findings, published in the January 31 issue of the Journal of Neuroscience, shed new light on the communication that takes place between the brain and body. The fish research may contribute to important medical advances in humans, including better prosthetic limbs and improved rehabilitative techniques for people suffering from strokes, cerebral palsy and other debilitating conditions.

"All animals, including humans, must continually make adjustments as they walk, run, fly or swim through the environment. These adjustments are based on feedback from thousands of sense organs all over the body, providing vision, touch, hearing and so on. Understanding how the brain processes this overwhelming amount of information is crucial if we want to help people overcome pathologies," said Noah Cowan, an assistant professor of mechanical engineering in Johns Hopkins' Whiting School of Engineering. In studying the fish and preparing the Neuroscience paper, Cowan teamed up with Eric Fortune, assistant professor of psychological and brain sciences in the Krieger School of Arts and Sciences, also at Johns Hopkins.

Cowan and Fortune focused on the movements of a small, nocturnal South American fish called the "glass knifefish" because of its almost transparent, blade-shaped body. This type of fish does something remarkable: it emits weak electrical signals which it uses to "see" in the dark. According to Fortune, several characteristics, including this electric sense, make this fish a superb subject for the study of how the brain uses sensory information to control locomotion.

"These fish are ideal both because we can easily monitor the sensing signals that their brains use and because the task we asked the fish to do -- swim forward and backward inside a small tube -- is very simple and straightforward," said Fortune, who also uses the fish to study the neural basis and evolution of behavior.

The fish prefer to "hide" inside these tubes, which are immersed in larger water tanks. In their research, Cowan and Fortune challenged the fish's ability to remain hidden by shifting the tubes forward and backward at varying frequencies. This required the fish to swim back and forth more and more rapidly in order to remain inside the tubes. But as the frequency became higher, the fish gradually failed to keep up with the movement of the tubes.

The team's detailed engineering analysis of the fish's adjustments under these conditions suggested that the animal's sensors and brains are "tuned" to consider Newton's laws of motion, Cowan said. In other words, the team found that the fish's nervous systems measured velocity, so the fish could accelerate or "brake" at just the right rate to remain within the moving tube.

"The fish were able to accelerate, brake and reverse direction based on a cascade of adjustments made through their sensory and nervous systems, in the same way that a driver approaching a red light knows he has to apply the brakes ahead of time to avoid overshooting and ending up in the middle of a busy intersection," Fortune said. "Your brain has to do this all the time when controlling movement because your body and limbs, like a car, have mass. This is true for large motions that require planning, such as driving a car, but also for unconscious control of all movements, such as reaching for a cup of coffee. Without this sort of predictive control, your hand would knock the cup off the table every time."

The researchers' understanding of the complex relationship between the glass knifefish's movements and the cascade of information coming into their brains and bodies via their senses could eventually spark developments in areas as far reaching as medicine and robotics.

"That animals unconsciously know that they have mass seems obvious enough, but it took a complex analysis of a very specialized fish to demonstrate this," Fortune said. "With this basic knowledge, we hope one day to be able to 'tune' artificial systems, such as prosthetics, so that they don't have the jerky and rough movements that most robots have, which is critical for medical applications."

The team's use of both neuroscience and engineering principles and tools also make it an important project for other reasons.

"So far, we have used a series of engineering analyses to tease apart some important information about how the nervous system works," Cowan said. "As we move forward, we expect to discover other exciting aspects of brain function that suggest new ways to design sensory control systems for autonomous robots."


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "'Electric' Fish Shed Light On How Brain Directs Movement." ScienceDaily. ScienceDaily, 2 February 2007. <www.sciencedaily.com/releases/2007/01/070131134917.htm>.
Johns Hopkins University. (2007, February 2). 'Electric' Fish Shed Light On How Brain Directs Movement. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2007/01/070131134917.htm
Johns Hopkins University. "'Electric' Fish Shed Light On How Brain Directs Movement." ScienceDaily. www.sciencedaily.com/releases/2007/01/070131134917.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins