Featured Research

from universities, journals, and other organizations

Reactor Upgrades Help Researchers Study Nuclear Fusion As Energy Source

Date:
February 13, 2007
Source:
Massachusetts Institute of Technology
Summary:
For about six months of the year, bursts of a hot, electrically charged gas, or plasma, swirl around a donut-shaped tube in a special MIT reactor, helping scientists learn more about a potential future energy source: nuclear fusion. During downtimes when the reactor is offline, as it is right now, engineers make upgrades that will help them achieve their goal of making fusion a viable energy source--a long-standing mission that will likely continue for decades.

Shyri Marazita, an engineer at the MIT Plasma Science and Fusion Center, peers out of the Alcator C-Mod vacuum vessel. He is in the process of installing a liquid helium cooled cryopump, a modification that will help the reactor achieve a steady-state flow of plasma.
Credit: Photo by Donna Coveney

For about six months of the year, bursts of a hot, electrically charged gas, or plasma, swirl around a donut-shaped tube in a special MIT reactor, helping scientists learn more about a potential future energy source: nuclear fusion.

During downtimes when the reactor is offline, as it is right now, engineers make upgrades that will help them achieve their goal of making fusion a viable energy source--a long-standing mission that will likely continue for decades.

MIT's reactor, known as Alcator C-Mod, is one of several tokamak plasma discharge reactors in the world. Inside the reactor, magnetic fields control the superheated plasma (up to 50 million degrees Kelvin) as it flows around the tube.

Fusion occurs when two deuterons, or one deuteron and one triton--nuclei of heavy hydrogen--fuse, creating helium and releasing energy. The reactions can only occur at extremely high temperatures.

Although MIT's reactor is smaller than others, it has a stronger magnetic field than some larger reactors, allowing the plasma to become denser at comparable temperatures. "That positions us to provide important data you can't get anywhere else," said Earl Marmar, head of MIT's Alcator C-Mod project and senior research scientist in the Department of Physics.

One major goal of the upgrades is to create a system where plasma can flow in a steady state, rather than short pulses, or bursts.

Last year, engineers added a microwave generator that creates phased waves that flow around the ring, reinforcing the plasma current. The microwaves interact with the highest velocity electrons in the plasma, pushing them around the ring.

"It's possible to use this approach to go to fully steady-state plasma," Marmar said. "As an attractive energy source, ultimately we want steady state."

Benefits of a steady-state system include a constant energy output, less need for energy storage and less stress on the system, he said.

This year's modifications include the installation of a cryopump, which will allow scientists to control the density of the plasma over a long period of time--another necessary step to achieving a steady-state flow.

Several other modifications will allow the researchers to more accurately measure properties of the plasma, such as density and temperature. The new devices will also allow them to more accurately detect and measure magnetic and electric fields generated by the plasma.

The reactor, which has been offline for upgrades since August, is expected to be ready to use again starting in March.

More than 100 MIT researchers from the Departments of Physics, Nuclear Science and Engineering, and Electrical Engineering and Computer Science, including about 30 graduate students, use the Alcator C-Mod reactor to run experiments.

On a recent morning, the control room, normally packed with scientists at about 100 computer monitors, was nearly empty while engineers, scientists and students worked on modifications to the reactor, located in the next room.

When experiments are going on, researchers from around the world can participate in and watch the proceedings through the Internet.

There is high demand for time to run experiments on the reactor, but priority is given to projects that have high relevance to the Alcator goals and also to MIT graduate student research projects.

"One of our highest priorities is to get graduate students the run time they need," Marmar said.

For more information on the Alcator project, visit http://www.psfc.mit.edu/research/alcator/.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Reactor Upgrades Help Researchers Study Nuclear Fusion As Energy Source." ScienceDaily. ScienceDaily, 13 February 2007. <www.sciencedaily.com/releases/2007/02/070210182517.htm>.
Massachusetts Institute of Technology. (2007, February 13). Reactor Upgrades Help Researchers Study Nuclear Fusion As Energy Source. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2007/02/070210182517.htm
Massachusetts Institute of Technology. "Reactor Upgrades Help Researchers Study Nuclear Fusion As Energy Source." ScienceDaily. www.sciencedaily.com/releases/2007/02/070210182517.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins