Featured Research

from universities, journals, and other organizations

Students Set To Fly Fire Balls In Space

Date:
February 13, 2007
Source:
University of Southern California -- Viterbi School of Engineering
Summary:
Fires don't break out very often on board orbiting spacecraft, but when they do, standard fire extinguishers aren't necessarily the best way to put them out. Oddly enough -- after decades of spaceflight and a few fires along the way -- nobody really knows yet what is the best way to put them out.

Experimenters floating in microgravity aboard KC-135.
Credit: Image courtesy of USC Viterbi School of Engineering

Fires don’t break out very often on board orbiting spacecraft, but when they do, standard fire extinguishers aren’t necessarily the best way to put them out.

Oddly enough — after decades of spaceflight and a few fires along the way — nobody really knows yet what is the best way to put them out.

That’s what a team of five Viterbi School aerospace engineering students wants to find out. This March, the group, which founded a new student space exploration club called USC Students for the Exploration and Development of Space (SEDS), will have a rare opportunity to find out more about how fire behaves at very low gravity, or “microgravity” — when they conduct a flame experiment outside the bounds of gravity.

They will be flying aboard NASA’s modified KC-135 aircraft, sometimes referred to as the “Vomit Comet.” Stationed at Ellington Field, Texas, near the space agency’s Johnson Space Center, the KC-135 “weightless wonder” is the only experimental facility that can recreate specific gravities, such as lunar gravity, reduced gravity, Martian gravity, or a sustained hypergravity.

The USC team will be concentrating solely on microgravity, which is similar to conditions onboard the orbiting space station. Flying aboard the KC-135 will be Daniel Calvo, a junior aerospace engineering major and captain of the USC flame experiment; Emily Hedges, a junior aerospace engineering major; Adriel Carreno, a junior mechanical engineering major; and John Duncan, a junior aerospace engineering major. Alternates are Quinn Freyermuth, a junior mechanical engineering major, and Mikeala Blackler, a junior industrial systems engineering major.

“It will be exciting to be able to experience weightlessness, but right now, we are really rushing to get our experiment built and tested,” said Calvo. “If all goes well, we hope we’ll get some good data from this experiment and be able to say something more definitive about what kinds of fire extinguishers the astronauts should have for living and working in space.”

Calvo and his team competed against scores of undergraduate teams across the country in NASA’s Reduced Gravity Student Flight Opportunities Program. The program gives students nationwide a unique opportunity to purpose, design, fabricate, fly and evaluate a reduced gravity experiment of their choice aboard its one-and-only flying microgravity laboratory.

“Fire burns very differently in space than it does on Earth, especially in the microgravity environment that we have aboard the space shuttle or on the international space station,” Calvo said. “In this experiment, we will test three atmospheres — a carbon dioxide (CO2) atmosphere, a helium-based (He) atmosphere and a nitrogen-based (N2) atmosphere — to see how fast fire burns.”

CO2 is a radiatively active gas and is used as a fire suppressant in terrestrial fire extinguishers. According to the team, research indicates that CO2-based atmospheres will actually cause fire extinguishers to increase the burning rate of a flame. That's because extinguishers use a CO2-based fire suppressant, which increases the heat transfer by radiation to the flame. Helium is just the opposite; it is a radiatively inactive gas. A helium-based atmosphere is likely to have the opposite effect.

“If this turns out to be the case, then the fire extinguishers we use on Earth aren’t going to be as effective in space,” Carreno said. “We’re testing helium because it is a radiatively inert gas which may actually slow the burn rate of a flame in microgravity.”

The third experimental atmosphere — a nitrogen-based atmosphere — will act as a control, as well as to simulate the type of environment experienced in manned space vehicles.

Hedges said the team has been scrambling since fall semester to design and test the combustion experiment. They’ve relied heavily on guidance from faculty advisor Eugene Bickers, who is a physics professor and associate vice provost for undergraduate programs, and help from Paul Ronney, an aeronautics/astronautics professor in the Viterbi School and former NASA astronaut.

Physically, the experiment consists of a test chamber and stand, and wax balls that will be ignited and studied inside the chamber. The students will fill the chamber with each of the three gases — CO2, He and N2 — to create the three different atmospheres, then ignite and study the wax balls as they burn in each atmosphere.

The team will get two flight days aboard NASA’s “weightless wonder” KC-135 aircraft to conduct their experiment, which means they will have about 60 chances (2 flights x 30 parabolas/flight) in all to ignite and measure their fireballs in weightlessness. Four additional teams from other institutions, each with four team members, will be sharing the ride and running independent experiments simultaneously.

The KC-135 aircraft usually flies 25-to-30 parabolic maneuvers over the Gulf of Mexico during each flight, Ronney said. That roller coaster pattern provides about 25-to-30 seconds of hypergravity (about 1.8 G to 2 G) as the plane climbs to the top of the parabola and “noses over” to begin its descent. The low gravity is experienced as the plane is climbing toward the top of the parabola.

Calvo is particularly keen to see how the flames behave in a CO2-based atmosphere, because that would confirm his suspicion that the current CO2 fire extinguishers used by astronauts should be replaced.

“There hasn’t been a fire onboard a spacecraft in a long time, so people haven’t thought much about fire extinguishers or fire safety for a while,” Calvo said. “This is a good time to revisit the issue.”


Story Source:

The above story is based on materials provided by University of Southern California -- Viterbi School of Engineering. Note: Materials may be edited for content and length.


Cite This Page:

University of Southern California -- Viterbi School of Engineering. "Students Set To Fly Fire Balls In Space." ScienceDaily. ScienceDaily, 13 February 2007. <www.sciencedaily.com/releases/2007/02/070212182603.htm>.
University of Southern California -- Viterbi School of Engineering. (2007, February 13). Students Set To Fly Fire Balls In Space. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2007/02/070212182603.htm
University of Southern California -- Viterbi School of Engineering. "Students Set To Fly Fire Balls In Space." ScienceDaily. www.sciencedaily.com/releases/2007/02/070212182603.htm (accessed July 24, 2014).

Share This




More Space & Time News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins