Featured Research

from universities, journals, and other organizations

A Single-photon Server With Just One Atom

Date:
March 14, 2007
Source:
Max Planck Society
Summary:
Every time you switch on a light bulb, 10 to the power of 15 (a million times a billion) visible photons, the elementary particles of light, are illuminating the room in every second. If that is too many for you, light a candle. If that is still too many, and say, you just want one and not more than one photon every time you press the button, you will have to work a little harder. Physicists at Max Planck Institute of Quantum Optics have succeeded in turning a Rubidium atom into a single-photon server.

A single atom trapped in a cavity generates a single photon after being triggered by a laser pulse. After the source is characterised, the subsequent photons can be distributed to a user.
Credit: Max Planck Institute of Quantum Optics

Every time you switch on a light bulb, 10 to the power of 15 (a million times a billion) visible photons, the elementary particles of light, are illuminating the room in every second. If that is too many for you, light a candle. If that is still too many, and say, you just want one and not more than one photon every time you press the button, you will have to work a little harder.

A team of physicists in the group of Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching near Munich, Germany, have now built a single-photon server based on a single trapped neutral atom. The high quality of the single photons and their ready availability are important for future quantum information processing experiments with single photons. In the relatively new field of quantum information processing the goal is to make use of quantum mechanics to compute certain tasks much more efficiently than with a classical computer. (Nature Physics online, March 11th, 2007)

A single atom, by its nature, can only emit one photon at a time. A single photon can be generated at will by applying a laser pulse to a trapped atom. By putting a single atom between two highly reflective mirrors, a so called cavity, all of these photons are sent in the same direction. Compared with other methods of single-photon generation the photons are of a very high quality, i.e. their energy varies very little, and the properties of the photons can be controlled. They can for instance be made indistinguishable, a property necessary for quantum computation. On the other hand, up to now, it was not possible to trap a neutral atom in a cavity and at the same time generate single photons for a sufficiently long time to make practical usage of the photons.

In 2005 the team around Prof. Rempe was able to increase the trapping times of single atoms in a cavity significantly by using three dimensional cavity cooling. In the present article they report on results where they have been able to combine this cavity cooling with the generation of single photons in a way that a single atom can generate up to 300,000 photons. In their current system the time the atom is available is much longer than the time needed to cool and trap the atom. Because the system can therefore run with a large duty cycle, distribution of the photons to a user has become possible: The system operates as a single-photon server.

The experiment uses a magneto-optical trap to prepare ultracold Rubidium atoms inside a vacuum chamber. These atoms are then trapped inside the cavity in the dipole potential of a focused laser beam. By applying a sequence of laser pulses from the side, a stream of single photons is emitted from the cavity. Between each emission of a single photon the atom is cooled, preventing it from leaving the trap.

To show that not more than one photon was produced per pulse, the photon stream was directed onto a beam splitter, which directed 50% of the photons to a detector, and the other 50% to a second detector. A single photon will be detected either by detector 1 or by detector 2. If detections of both detectors coincide, more than one photon must have been present in the pulse. It is thus the absence of these coincidences that proves that one and not more than one photon is produced at the same time, which is demonstrated convincingly in the work presented.

With the progress reported now, quantum information processing with photons has come one step closer. With the single-photon server operating, Gerhard Rempe and his team are now ready to take on the next challenges such as deterministic atom-photon and atom-atom entanglement experiments.


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "A Single-photon Server With Just One Atom." ScienceDaily. ScienceDaily, 14 March 2007. <www.sciencedaily.com/releases/2007/03/070312111259.htm>.
Max Planck Society. (2007, March 14). A Single-photon Server With Just One Atom. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2007/03/070312111259.htm
Max Planck Society. "A Single-photon Server With Just One Atom." ScienceDaily. www.sciencedaily.com/releases/2007/03/070312111259.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins