Featured Research

from universities, journals, and other organizations

Mechanics Meets Chemistry In New Way To Manipulate Matter

Date:
March 22, 2007
Source:
University of Illinois at Urbana-Champaign
Summary:
Researchers at the University of Illinois at Urbana-Champaign have found a novel way to manipulate matter and drive chemical reactions along a desired direction. The new technique utilizes mechanical force to alter the course of chemical reactions and yield products not obtainable through conventional conditions.

An overlay of images at successive stages of force-induced chemical change. The blue image is the start of the reaction. The yellow image represents the end of the reaction.
Credit: Image by Ashley Levato

The inventors of self-healing plastic have come up with another invention: a new way of doing chemistry.

Related Articles


Researchers at the University of Illinois at Urbana-Champaign have found a novel way to manipulate matter and drive chemical reactions along a desired direction. The new technique utilizes mechanical force to alter the course of chemical reactions and yield products not obtainable through conventional conditions.

Potential applications include materials that more readily repair themselves, or clearly indicate when they have been damaged.

"This is a fundamentally new way of doing chemistry," said Jeffrey Moore, a William H. and Janet Lycan Professor of Chemistry at Illinois and corresponding author of a paper that describes the technique in the March 22 issue of the journal Nature.

"By harnessing mechanical energy, we can go into molecules and pull on specific bonds to drive desired reactions," said Moore, who also is a researcher at the Frederick Seitz Materials Laboratory on campus and at the university's Beckman Institute for Advanced Science and Technology. The directionally specific nature of mechanical force makes this approach to reaction control fundamentally different from the usual chemical and physical constraints. To demonstrate the technique, Moore and colleagues placed a mechanically active molecule -- called a mechanophore -- at the center of a long polymer chain. The polymer chain was then stretched in opposite directions by a flow field created by the collapse of cavitating bubbles produced by ultrasound, subjecting the mechanophore to a mechanical tug of war.

"We created a situation where a chemical reaction could go down one of two pathways," Moore said. "By applying force to the mechanophore, we could bias which of those pathways the reaction chose to follow."

One potential application of the technique is as a trigger to divert mechanical energy stored in stressed polymers into chemical pathways such as self-healing reactions.

In the original self-healing concept, microcapsules of healing agent are ruptured when a crack forms in the material. Capillary action then transports the healing agent to the crack, where it mixes with a chemical catalyst, and polymerization takes place.

With new mechanical triggers, however, mechanical energy would initiate the polymerization directly, thereby skipping many steps. The cross-linking of neighboring chains would prevent further propagation of a crack and avoid additional damage.

"We have demonstrated that it is now possible to use mechanical force to steer chemical reactions along pathways that are unattainable by conventional means," Moore said. "We look forward to developing additional mechanophores whose chemical reactivity will be activated by external force."

The other authors of the paper besides Moore are graduate student and lead author Charles Hickenboth, aerospace engineering professor Scott White, materials science and engineering professor Nancy Sottos, and research chemists Scott Wilson and Jerome Baudry. White, Sottos and Moore co-invented self-healing plastic.

The work was supported by the U.S. Air Force Office of Scientific Research and the Petroleum Research Fund.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Mechanics Meets Chemistry In New Way To Manipulate Matter." ScienceDaily. ScienceDaily, 22 March 2007. <www.sciencedaily.com/releases/2007/03/070321181945.htm>.
University of Illinois at Urbana-Champaign. (2007, March 22). Mechanics Meets Chemistry In New Way To Manipulate Matter. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2007/03/070321181945.htm
University of Illinois at Urbana-Champaign. "Mechanics Meets Chemistry In New Way To Manipulate Matter." ScienceDaily. www.sciencedaily.com/releases/2007/03/070321181945.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins