Featured Research

from universities, journals, and other organizations

Mechanics Meets Chemistry In New Way To Manipulate Matter

Date:
March 22, 2007
Source:
University of Illinois at Urbana-Champaign
Summary:
Researchers at the University of Illinois at Urbana-Champaign have found a novel way to manipulate matter and drive chemical reactions along a desired direction. The new technique utilizes mechanical force to alter the course of chemical reactions and yield products not obtainable through conventional conditions.

An overlay of images at successive stages of force-induced chemical change. The blue image is the start of the reaction. The yellow image represents the end of the reaction.
Credit: Image by Ashley Levato

The inventors of self-healing plastic have come up with another invention: a new way of doing chemistry.

Researchers at the University of Illinois at Urbana-Champaign have found a novel way to manipulate matter and drive chemical reactions along a desired direction. The new technique utilizes mechanical force to alter the course of chemical reactions and yield products not obtainable through conventional conditions.

Potential applications include materials that more readily repair themselves, or clearly indicate when they have been damaged.

"This is a fundamentally new way of doing chemistry," said Jeffrey Moore, a William H. and Janet Lycan Professor of Chemistry at Illinois and corresponding author of a paper that describes the technique in the March 22 issue of the journal Nature.

"By harnessing mechanical energy, we can go into molecules and pull on specific bonds to drive desired reactions," said Moore, who also is a researcher at the Frederick Seitz Materials Laboratory on campus and at the university's Beckman Institute for Advanced Science and Technology. The directionally specific nature of mechanical force makes this approach to reaction control fundamentally different from the usual chemical and physical constraints. To demonstrate the technique, Moore and colleagues placed a mechanically active molecule -- called a mechanophore -- at the center of a long polymer chain. The polymer chain was then stretched in opposite directions by a flow field created by the collapse of cavitating bubbles produced by ultrasound, subjecting the mechanophore to a mechanical tug of war.

"We created a situation where a chemical reaction could go down one of two pathways," Moore said. "By applying force to the mechanophore, we could bias which of those pathways the reaction chose to follow."

One potential application of the technique is as a trigger to divert mechanical energy stored in stressed polymers into chemical pathways such as self-healing reactions.

In the original self-healing concept, microcapsules of healing agent are ruptured when a crack forms in the material. Capillary action then transports the healing agent to the crack, where it mixes with a chemical catalyst, and polymerization takes place.

With new mechanical triggers, however, mechanical energy would initiate the polymerization directly, thereby skipping many steps. The cross-linking of neighboring chains would prevent further propagation of a crack and avoid additional damage.

"We have demonstrated that it is now possible to use mechanical force to steer chemical reactions along pathways that are unattainable by conventional means," Moore said. "We look forward to developing additional mechanophores whose chemical reactivity will be activated by external force."

The other authors of the paper besides Moore are graduate student and lead author Charles Hickenboth, aerospace engineering professor Scott White, materials science and engineering professor Nancy Sottos, and research chemists Scott Wilson and Jerome Baudry. White, Sottos and Moore co-invented self-healing plastic.

The work was supported by the U.S. Air Force Office of Scientific Research and the Petroleum Research Fund.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Mechanics Meets Chemistry In New Way To Manipulate Matter." ScienceDaily. ScienceDaily, 22 March 2007. <www.sciencedaily.com/releases/2007/03/070321181945.htm>.
University of Illinois at Urbana-Champaign. (2007, March 22). Mechanics Meets Chemistry In New Way To Manipulate Matter. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2007/03/070321181945.htm
University of Illinois at Urbana-Champaign. "Mechanics Meets Chemistry In New Way To Manipulate Matter." ScienceDaily. www.sciencedaily.com/releases/2007/03/070321181945.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins