Featured Research

from universities, journals, and other organizations

Improving Sound Quality In Hearing Aids

Date:
March 29, 2007
Source:
Weizmann Institute of Science
Summary:
Modern hearing aids, though quite sophisticated, still do not faithfully reproduce sound as it is perceived by hearing people. New findings at the Weizmann Institute of Science shed light on a crucial mechanism -- the tectorial membrane -- for discerning different sound frequencies, and thus may have implications for the design of better hearing aids.

Modern hearing aids, though quite sophisticated, still do not faithfully reproduce sound as hearing people perceive it. New findings at the Weizmann Institute of Science shed light on a crucial mechanism for discerning different sound frequencies and thus may have implications for the design of better hearing aids.

Research by Dr. Itay Rousso of the Weizmann Institute's Structural Biology Department, which recently appeared in the Proceedings of the National Academy of Sciences (PNAS), suggests that a thin structure in the inner ear called the tectorial membrane responds to different frequencies. This membrane communicates between the outer hair cells (which amplify sound in the form of mechanical vibrations) and the inner hair cells (which convert these mechanical vibrations to electrical signals and pass them on to the brain via the auditory nerve). If certain genes for this membrane are missing or damaged, total deafness ensues.

Rousso and research student Rachel Gueta, together with researchers at the Ben-Gurion University of the Negev, wanted to explore the mechanical properties of the tectorial membrane. Using an atomic force microscope, which probes surfaces with a fine microscopic needle, they tested the resistance of the gel-like membrane at various points to assess precisely how rigid or flexible it was. To their surprise, the scientists found that the level of rigidity varies significantly along the length of the membrane: One end of the membrane can be up to ten times more rigid than the other.

These differences occur in the part of the membrane that is in direct contact with the outer hair cells. Observation under a scanning electron microscope revealed that this variation is due to changes in the way the protein fibers are arranged: At one end, they form a flimsy, net-like structure that allows the membrane to be flexible; on the rigid side, the fibers are densely and uniformly packed.

The more rigid a tectorial membrane is, the higher the frequency at which it can vibrate. Thus, the flexible end of the membrane, which should respond to low-frequency vibration, is found near the hair cells that transmit low frequencies, and the rigid end near hair cells that transmit high ones. This spatial separation, say the scientists, translates into the ability to distinguish between sounds of different frequencies.

The new understanding of the mechanics of hearing may assist in the development of better hearing aids. Rousso, meanwhile, plans to continue exploring how variations in membrane rigidity affect hearing. He intends to test tectorial membranes under different physiological conditions to further understand how we hear such a wide range of frequencies (the highest is a thousand times the lowest), as well as to shed light on the causes of certain hearing problems.

Dr. Itay Rousso's research is supported by the Clore Center for Biological Physics; the Helen and Martin Kimmel Center for Nanoscale Science; the Jeans-Jacques Brunschwig Fund for the Molecular Genetics of Cancer; the Estelle Funk Foundation; and the President's Fund for Biomedical Research. Dr. Rousso is the incumbent of the Robert Edward and Roselyn Rich Manson Career Development Chair.


Story Source:

The above story is based on materials provided by Weizmann Institute of Science. Note: Materials may be edited for content and length.


Cite This Page:

Weizmann Institute of Science. "Improving Sound Quality In Hearing Aids." ScienceDaily. ScienceDaily, 29 March 2007. <www.sciencedaily.com/releases/2007/03/070327144236.htm>.
Weizmann Institute of Science. (2007, March 29). Improving Sound Quality In Hearing Aids. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2007/03/070327144236.htm
Weizmann Institute of Science. "Improving Sound Quality In Hearing Aids." ScienceDaily. www.sciencedaily.com/releases/2007/03/070327144236.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Thousands Who Can't Afford Medical Care Flock to Free US Clinic

Thousands Who Can't Afford Medical Care Flock to Free US Clinic

AFP (July 23, 2014) America may be the world’s richest country, but in terms of healthcare, the World Health Organisation ranks it 37th. Thousands turned out for a free clinic run by "Remote Area Medical" with a visit from the Governor of Virginia. Duration: 2:40 Video provided by AFP
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins