Featured Research

from universities, journals, and other organizations

Natural Tumor Suppressor Variants Discovered, Could Lead to New Therapies For Diabetes, Heart Disease

Date:
April 10, 2007
Source:
University of California - San Diego
Summary:
Building on a 2005 discovery of an enzyme that is a natural tumor suppressor, researchers have now identified two variants of that enzyme which could provide new targets for therapies to treat diabetes, heart and neurological disease.

Building on their 2005 discovery of an enzyme that is a natural tumor suppressor, researchers at the University of California, San Diego (UCSD) School of Medicine have now identified two variants of that enzyme which could provide new targets for therapies to treat diabetes, heart and neurological disease. The findings, by Alexandra C. Newton, Ph.D., UCSD professor of pharmacology, and colleagues are published in the journal Molecular Cell.

Previous research by Newton's lab, also published in Molecular Cell, described the discovery of an enzyme they named PH domain Leucine-rich repeat Protein Phosphatase (PHLPP, pronounced "flip") that turns off signaling of the Akt/protein kinase B, a protein which controls cell growth, proliferation and survival.

The new work describes a second family member, PHLPP2, which also inactivates Akt, inhibiting the cell cycle progression and promoting cell death. However, PHLPP1 and PHLPP2 control three different disease pathways. While both are important in cancer, PHLPP 1 impacts an important pathway in diabetes and PHLPP2 could be useful in fighting heart and neurological disease.

"We first discovered that PHLPP controls Akt, which is the driver on the pathway to tumor growth," said Newton. "PHLPP is like a brake that, when on, slows the driver but when 'off' allows the driver to move. In cancer, we want the driver to brake, to prevent cell proliferation leading to tumor growth. But in diabetes, heart or neurological disease, where we want to promote cell growth and survival, we don't want to slow the driver down."

The researchers have now found that PHLPP1 controls the driver along one pathway -- Akt2, which is more closely involved in maintaining a constant level of glucose in the bloodstream. Therapies directed at inhibiting PHLPP1 could be used to treat diabetes; in essence, removing the 'brake' and allowing Akt2 to be more functional and allow better insulin regulation. PHLPP2, on the other hand, controls the driver on Akt1, the path involved with cell survival. Therapies directed at releasing the brake on this driver would allow cells involved in heart or neurological diseases to better survive.

"Both PHLPP variants are important in cancer; the loss of a brake to any of the three Akt pathways sends 'go, go, go' signals that promote the survival of tumor cells," said first author John Brognard. UCSD researchers had previously discovered that Akt is hyperactivated, or elevated, in most cancers and PHLPP provides a mechanism to reverse this activation.

Additional contributors to this paper include Brognard, Tianyan Gao and Emma Sierecki, UCSD Department of Pharmacology. Funding for the research was provided in part by the National Institutes of Health and a grant from the U.S. Army Medical Research Acquisition Activity.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Natural Tumor Suppressor Variants Discovered, Could Lead to New Therapies For Diabetes, Heart Disease." ScienceDaily. ScienceDaily, 10 April 2007. <www.sciencedaily.com/releases/2007/04/070409144745.htm>.
University of California - San Diego. (2007, April 10). Natural Tumor Suppressor Variants Discovered, Could Lead to New Therapies For Diabetes, Heart Disease. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2007/04/070409144745.htm
University of California - San Diego. "Natural Tumor Suppressor Variants Discovered, Could Lead to New Therapies For Diabetes, Heart Disease." ScienceDaily. www.sciencedaily.com/releases/2007/04/070409144745.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins