Featured Research

from universities, journals, and other organizations

X-ray Holograms Expose Secret Magnetism

Date:
May 4, 2007
Source:
University College London
Summary:
Scientists report a major breakthrough in the understanding of antiferromagnets. They have used X-rays to see the internal workings of antiferromagnets for the very first time.

By observing changes in coherent X-ray speckle pattern, such as the one shown above, researchers are able for the first time to investigate nanoscale dynamics of antiferromagnetic domain walls, and observe a cross over from classical to quantum behavior.
Credit: O. Shpyrko, Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Ill., 60439, USA

Collaborative research between scientists in the UK and USA has led to a major breakthrough in the understanding of antiferromagnets, published in this week's Nature. Scientists at the London Centre for Nanotechnology, the University of Chicago and the Center for Nanoscale Materials at Argonne National Laboratory have used x-rays to see the internal workings of antiferromagnets for the very first time.

Related Articles


Unlike conventional magnets, antiferromagnets (such as the metal chromium) are materials which exhibit 'secret' magnetism, undetectable at a macroscopic level. Instead, their magnetism is confined to very small regions where atoms behave as tiny magnets. They spontaneously align themselves opposite to adjacent atoms, leaving the material magnetically neutral overall.

Professor Gabriel Aeppli, Director of the London Centre for Nanotechnology, said: "People have been familiar with ferromagnets for hundreds of years and they have countless everyday uses; everything from driving electrical motors to storing information on hard disk drives. We haven't been able to make the same strides with antiferromagnets because we weren't able to look inside them and see how they were ordered.

"This breakthrough takes our understanding of the internal dynamics of antiferromagnets to where we were ninety years ago with ferromagnets. Once you can see something, it makes it that much easier to start engineering it."

The magnetic characteristics of ferromagnets have been studied by scientists since Greek antiquity, enabling them to build up a detailed picture of the regions - or "magnetic domains" - into which they are divided. However, antiferromagnets remained a mystery because their internal structure was too fine to be measured.

The internal order of antiferromagnets is on the same scale as the wavelength of x-rays (below 10 nanometers). The latest research used x-ray photon correlation spectroscopy to produce 'speckle' patterns; holograms which provide a unique 'fingerprint' of a particular magnetic domain configuration.

Dr. Eric D. Isaacs, Director of the Center for Nanoscale Materials, said: "Since the discovery of x-rays over 100 years ago, it has been the dream of scientists and engineers to use them to make holographic images of moving objects, such as magnetic domains, at the nanoscale.

"This has only become possible in the last few years with the availability of sources of coherent x-rays, such as the Advanced Photon Source, and the future looks even brighter with the development of fully coherent x-ray sources called Free Electron Lasers over the next few years."

In addition to producing the first antiferromagnet holograms, the research also showed that their magnetic domains shift over time, even at the lowest of temperatures. The most likely explanation for this can be found in quantum mechanics and the experiments open the door to the future exploitation of antiferromagnets in emerging technologies such as quantum computing.

"The key finding of our research provides information on the stability of domain walls in antiferromagnets," said Oleg Shpyrko, lead author on the publication and researcher at the Center for Nanoscale Materials. "Understanding this is the first step towards engineering antiferromagnets into useful nanoscale devices that exploit it."

Work at the London Centre for Nanotechnology was funded by a Royal Society Wolfson Research Merit Award and the Basic Technologies program of Research Councils UK. Work at the Center for Nanoscale Materials and the Advanced Photon Source was supported by the DOE Office of Science, Office of Basic Energy Sciences. The work at the University of Chicago was supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Cite This Page:

University College London. "X-ray Holograms Expose Secret Magnetism." ScienceDaily. ScienceDaily, 4 May 2007. <www.sciencedaily.com/releases/2007/05/070502143727.htm>.
University College London. (2007, May 4). X-ray Holograms Expose Secret Magnetism. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2007/05/070502143727.htm
University College London. "X-ray Holograms Expose Secret Magnetism." ScienceDaily. www.sciencedaily.com/releases/2007/05/070502143727.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins