Featured Research

from universities, journals, and other organizations

X-ray Holograms Expose Secret Magnetism

Date:
May 4, 2007
Source:
University College London
Summary:
Scientists report a major breakthrough in the understanding of antiferromagnets. They have used X-rays to see the internal workings of antiferromagnets for the very first time.

By observing changes in coherent X-ray speckle pattern, such as the one shown above, researchers are able for the first time to investigate nanoscale dynamics of antiferromagnetic domain walls, and observe a cross over from classical to quantum behavior.
Credit: O. Shpyrko, Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Ill., 60439, USA

Collaborative research between scientists in the UK and USA has led to a major breakthrough in the understanding of antiferromagnets, published in this week's Nature. Scientists at the London Centre for Nanotechnology, the University of Chicago and the Center for Nanoscale Materials at Argonne National Laboratory have used x-rays to see the internal workings of antiferromagnets for the very first time.

Unlike conventional magnets, antiferromagnets (such as the metal chromium) are materials which exhibit 'secret' magnetism, undetectable at a macroscopic level. Instead, their magnetism is confined to very small regions where atoms behave as tiny magnets. They spontaneously align themselves opposite to adjacent atoms, leaving the material magnetically neutral overall.

Professor Gabriel Aeppli, Director of the London Centre for Nanotechnology, said: "People have been familiar with ferromagnets for hundreds of years and they have countless everyday uses; everything from driving electrical motors to storing information on hard disk drives. We haven't been able to make the same strides with antiferromagnets because we weren't able to look inside them and see how they were ordered.

"This breakthrough takes our understanding of the internal dynamics of antiferromagnets to where we were ninety years ago with ferromagnets. Once you can see something, it makes it that much easier to start engineering it."

The magnetic characteristics of ferromagnets have been studied by scientists since Greek antiquity, enabling them to build up a detailed picture of the regions - or "magnetic domains" - into which they are divided. However, antiferromagnets remained a mystery because their internal structure was too fine to be measured.

The internal order of antiferromagnets is on the same scale as the wavelength of x-rays (below 10 nanometers). The latest research used x-ray photon correlation spectroscopy to produce 'speckle' patterns; holograms which provide a unique 'fingerprint' of a particular magnetic domain configuration.

Dr. Eric D. Isaacs, Director of the Center for Nanoscale Materials, said: "Since the discovery of x-rays over 100 years ago, it has been the dream of scientists and engineers to use them to make holographic images of moving objects, such as magnetic domains, at the nanoscale.

"This has only become possible in the last few years with the availability of sources of coherent x-rays, such as the Advanced Photon Source, and the future looks even brighter with the development of fully coherent x-ray sources called Free Electron Lasers over the next few years."

In addition to producing the first antiferromagnet holograms, the research also showed that their magnetic domains shift over time, even at the lowest of temperatures. The most likely explanation for this can be found in quantum mechanics and the experiments open the door to the future exploitation of antiferromagnets in emerging technologies such as quantum computing.

"The key finding of our research provides information on the stability of domain walls in antiferromagnets," said Oleg Shpyrko, lead author on the publication and researcher at the Center for Nanoscale Materials. "Understanding this is the first step towards engineering antiferromagnets into useful nanoscale devices that exploit it."

Work at the London Centre for Nanotechnology was funded by a Royal Society Wolfson Research Merit Award and the Basic Technologies program of Research Councils UK. Work at the Center for Nanoscale Materials and the Advanced Photon Source was supported by the DOE Office of Science, Office of Basic Energy Sciences. The work at the University of Chicago was supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Cite This Page:

University College London. "X-ray Holograms Expose Secret Magnetism." ScienceDaily. ScienceDaily, 4 May 2007. <www.sciencedaily.com/releases/2007/05/070502143727.htm>.
University College London. (2007, May 4). X-ray Holograms Expose Secret Magnetism. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2007/05/070502143727.htm
University College London. "X-ray Holograms Expose Secret Magnetism." ScienceDaily. www.sciencedaily.com/releases/2007/05/070502143727.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins