Featured Research

from universities, journals, and other organizations

Supercomputer Shows That Nanolayers Have Turning Sense

Date:
May 11, 2007
Source:
Helmholtz
Summary:
Physicists have discovered that on the atomic level nature differentiates between the image and mirror image of magnetic structures. On the one hand, this finding opens up a whole new research area and, on the other hand, it may also lead to applications in "spintronics", a promising field of future technology.

Researchers at Jülich have discovered that magnetic moments in thin metal films can only take on a certain order. In the figure, the red and green arrows represent the so-called "spins" that can be regarded as small elementary magnets. In the top picture the existing arrangement is shown and at the bottom the mirror image that does not exist.
Credit: Illustration: University of Hamburg

Physicists from Research Centre Jülich and the University of Hamburg have discovered that on the atomic level nature differentiates between the image and mirror image of magnetic structures. With the aid of computer simulations in Jülich and experiments in Hamburg, they detected a so-called “homochiral” magnetic structure in a thin metal layer, as described in an article published in the journal “Nature”. There is no version with mirror-image spin. The researchers found this surprising selectivity very exciting since, on the one hand, it opens up a whole new research area and, on the other hand, it may also lead to applications in “spintronics”, a promising field of future technology.

Although the image and mirror image appear similar, they are not necessarily identical – this insight is by no means revolutionary. Scientists call structures whose image and mirror image cannot be superimposed on each other “chiral”. An example of this is the human hand. In low-dimensional systems chirality displays surprising features. Thus, for example, in nature many biopolymers, such as amino acids, the building blocks of proteins, only occur in one of two theoretically conceivable variants: they are thus homochiral. The mirror image form only exists in the laboratory.

Physicists from Research Centre Jülich and the University of Hamburg have discovered that in the case of magnetic structures nature also prefers one form rather than its mirror image in thin metallic structures. They report their findings in the current issue of the high-impact journal “Nature”. With the aid of computer simulations they calculated that in a single atomic layer of manganese it is always the same three-dimensional, rotated arrangement that occurs and never the mirror image. This was also confirmed by their experiments. “Such chiral structures are hot candidates for practical applications, for example in the promising field of “spintronics”, since they permit a coupling of electronic, optical, magnetic and structural properties", Prof. Stefan Blügel, Director at the Jülich Institute of Solid State Research, underlines the significance of this finding.

“In the components of the future, the flowing current can transfer spin moment to the magnetic structure and thus set it in motion.” The tiny forms are not new but they were previously only known in very rare crystal structures. This work by physicists from Jülich revealed for the first time that this phenomenon is also present in other materials that are relatively easy to produce, easy to investigate and are already widely used in practical applications - namely thin metallic films. The authors of an accompanying article in the Nature “News and Views” section are convinced that these questions are more than an academic challenge: "Understanding and controlling the twists and turns of thin-film magnetic states could well be handy for new applications such as ultra-high-density magnetic recording media. "

The magnetic structure discovered by the theoretical physicist Blügel and his colleagues resembles a breaking wave whose motion is frozen, its form elongated and lined up like a string of beads. There is no mirror image, that is to say a wave turned upside down, at least not in the manganese layer studied. However, the calculations must be repeated for every material and all layer thicknesses. And these calculations are very tedious – consuming tens of thousands of hours of computing time on the fastest computers currently available. The scientists benefit from having ready access to two so-called supercomputers at the John von Neumann Institute for Computing (NIC) in Jülich so that the computing time can be reduced to about a month. This makes it possible for them to investigate even more complex magnetic structures.

The researchers managed to make their scientific breakthrough because they included in their calculations a magnetic interaction that had previously been ignored, the so-called Dzyaloshinskii-Moriya (DM) interaction, which is irrelevant in considerations of the bulk properties of manganese and similar metals. The physicists were, however, able to determine that this interaction arises when single atomic layers of manganese are deposited on a substrate. The DM interaction is then the decisive mechanism for the unique arrangement of the elementary magnetic moments.

The Jülich solid-state physicists succeeded for the first time in quantitatively determining the strength of this interaction. The scientists are convinced that their findings will bring about a fundamental change in the understanding of magnetism on the nanoscale. “Our work will create a new basis and open up a completely new research field. At the moment, our studies are still in their infancy”, says Blügel. And the authors of the accompanying article in “Nature” confirm that “… many earlier results will have to be revisited."


Story Source:

The above story is based on materials provided by Helmholtz. Note: Materials may be edited for content and length.


Cite This Page:

Helmholtz. "Supercomputer Shows That Nanolayers Have Turning Sense." ScienceDaily. ScienceDaily, 11 May 2007. <www.sciencedaily.com/releases/2007/05/070510113340.htm>.
Helmholtz. (2007, May 11). Supercomputer Shows That Nanolayers Have Turning Sense. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2007/05/070510113340.htm
Helmholtz. "Supercomputer Shows That Nanolayers Have Turning Sense." ScienceDaily. www.sciencedaily.com/releases/2007/05/070510113340.htm (accessed July 30, 2014).

Share This




More Computers & Math News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Twitter Earnings Blow Away Analysts' Predictions

Twitter Earnings Blow Away Analysts' Predictions

Newsy (July 29, 2014) — After reporting a strong second quarter in both revenue and active monthly users, Twitter saw a big boost to its shares in after-hours trading. Video provided by Newsy
Powered by NewsLook.com
It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) — If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
Why Facebook Wants You To Download Its Messenger App

Why Facebook Wants You To Download Its Messenger App

Newsy (July 29, 2014) — Facebook will start requiring users to download a separate Messenger application if they wish to continue using Facebook for mobile messaging. Video provided by Newsy
Powered by NewsLook.com
Teen's Phone Ignites Under Her Pillow; How Real Is The Risk?

Teen's Phone Ignites Under Her Pillow; How Real Is The Risk?

Newsy (July 28, 2014) — A Texas teen's Samsung phone apparently ignited while she slept, but what was the real problem here? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins