Featured Research

from universities, journals, and other organizations

Nanoscale Pasta: Toward Nanoscale Electronics

Date:
May 22, 2007
Source:
University Of California, San Diego
Summary:
Pasta tastes like pasta -- with or without a spiral. But when you jump to the nanoscale, everything changes: carbon nanotubes and nanofibers that look like nanoscale spiral pasta have completely different electronic properties than their non-spiraling cousins. Engineers are studying these differences in the hopes of creating new kinds of components for nanoscale electronics.

Indium arsenide (InAs) nanowires grown by the VLS technique Image. Image taken with a scanning electron microscope. Scale bar is 2 micrometers.
Credit: Image courtesy of University Of California, San Diego

Pasta tastes like pasta – with or without a spiral. But when you jump to the nanoscale, everything changes: carbon nanotubes and nanofibers that look like nanoscale spiral pasta have completely different electronic properties than their non-spiraling cousins. Engineers at UC San Diego, and Clemson University are studying these differences in the hopes of creating new kinds of components for nanoscale electronics.

Related Articles


“We are looking at spiraling, bent and helical carbon nanotubes from the point of view of new functionality. Can we get something totally different from these nonlinear nanotubes?” asked Prab Bandaru, a mechanical and aerospace engineering professor at the UC San Diego Jacobs School of Engineering.

For example, spiral shaped nanotubes could turn out to be important for new kinds of nanoscale switching and memory storage devices.

Recently, Bandaru won a National Science Foundation CAREER award for the study of nonlinear nanotubes. The Faculty Early Career Development (CAREER) Program is the NSF’s most prestigious award in support of the early career-development activities of junior faculty. Bandaru’s award carries with it a 5-year, $400,000 grant to support research aimed at developing Bandaru, a mechanical and aerospace engineering professor at the UC San Diego Jacobs new types of nanoelectronic components including electrical switches, logic elements, frequency mixers and nanoscale inductors. Such devices could some day outperform conventional silicon technologies on a number of levels, such as power consumption, radiation hardness, and heat dissipation.

Bandaru collaborates with Apparao Rao, of Clemson University, on the controlled synthesis of carbon nanotubes with a variety of shapes, including Y-junctions and nanohelices, through chemical vapor deposition processes. Once they are grown, transmission electron microscopy is used to perform structural analyses of the nonlinear nanotubes. The engineers are also investigating nanotube growth mechanisms, defects, nanoscale electrical conduction mechanisms and device modeling. In addition, they are exploring both the layout of electrical and optoelectronic circuits, and the limits of device operation through high frequency measurements.

“Because nanotubes are so small, you need to work at the atomic level to understand and manipulate them,” explained Bandaru. The presence or absence of single carbon atoms at strategic locations within nanotubes determines whether they have a linear or spiral shape.

Work on nonlinear nanowires isalready wellunderway at UCSD and around the world. Bandaru, for example, is the first author on a paper recently published in the Journal of Applied Physics that outlines a mechanism for how carbon nanotubes and nanofibers grow. In particular, the model predicts conditions under which coiling will happen.

“Now that we know the exact conditions under which the helical nanostructures grow, we can exert greater control over the electronic and other properties of nonlinear nanotubes,” said Bandaru.

Exactly where, when and how linear and nonlinear nanotubes will make the leap from the laboratory to the real world is still unclear. Scientists have more to learn about their basic properties, about how to control their growth, and about how to integrate them into devices.

In August 2005, Bandaru made headlines around the world when his work on Y-shaped nanotubes appeared in the journal Nature Materials. Bandaru and colleagues at UCSD’s Jacobs School and Clemson University demonstrated that Y-shaped nanotubes can behave as electronic switches similar to conventional transistors, which are the workhorses of modern microprocessors, digital memory, and application-specific integrated circuits.

Nanotubes, of course, are not the only tiny spiraling structures. DNA and proteins also have helical structures. “It’s gratifying to encounter connections at the nanoscale between biological structures and helices and coils synthesized via chemical vapor deposition,” said Bandaru. “Our future work might improve our understanding of why helices abound in nature.”

Reference: P.R. Bandaru et al, Journal of Applied Physics, vol. 101, no. 9, p 094307, 2007

Funding was provided by the National Science Foundation and the Office of Naval Research.


Story Source:

The above story is based on materials provided by University Of California, San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Diego. "Nanoscale Pasta: Toward Nanoscale Electronics." ScienceDaily. ScienceDaily, 22 May 2007. <www.sciencedaily.com/releases/2007/05/070521153407.htm>.
University Of California, San Diego. (2007, May 22). Nanoscale Pasta: Toward Nanoscale Electronics. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2007/05/070521153407.htm
University Of California, San Diego. "Nanoscale Pasta: Toward Nanoscale Electronics." ScienceDaily. www.sciencedaily.com/releases/2007/05/070521153407.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins