Featured Research

from universities, journals, and other organizations

Algorithm May Help Chipmakers Work With Tangles Of Nanotubes

Date:
June 8, 2007
Source:
Stanford University
Summary:
Concerned that current methods for making computer chips might become stymied as components keep shrinking, many engineers are looking for circuit building blocks with improved electrical properties. Among the most promising are stringy carbon nanotubes that capably form transistors to switch current on and off. But the nanotubes tend to grow with unpredictable kinks and bends that could cause bad wiring connections. This week at the Design Automation Conference in San Diego, a group of Stanford engineers will present a way to design circuits that should work even when many of the nanotubes in them are twisted and misaligned.

Engineers from Stanford and the University of Southern California have found a way to design circuits containing carbon nanotubes that should work even when many of the nanotubes are twisted and misaligned.
Credit: Courtesy of Nishant Patil

Concerned that current methods for making computer chips might become stymied as components keep shrinking, many engineers are looking for circuit building blocks with improved electrical properties. Among the most promising are stringy carbon nanotubes that capably form transistors to switch current on and off. But the nanotubes tend to grow with unpredictable kinks and bends that could cause bad wiring connections. This week at the Design Automation Conference in San Diego, a group of Stanford engineers will present a way to design circuits that should work even when many of the nanotubes in them are twisted and misaligned.

"The question is what's next in chip technologies," says Subhasish Mitra, an assistant professor of electrical engineering and computer science. "That's why nanotechnology is important. But you want to make sure that you are not in a lab making something that chip designers cannot actually use."

To prevent that, he and electrical engineering Professor H.-S. Philip Wong, working with chemistry Professor Chongwu Zhou at the University of Southern California, have been looking closely at how nanotubes end up resting on the surfaces of experimental chips.

"It's not as bad as a plate of noodles," Mitra says. "You want to create transistors out of these things, and hook up these transistors and make them turn on and off independently. But if twisted carbon nanotubes, for example, short out the circuit, you lose the opportunity to do that."

Making messy workable

What Mitra, Wong and graduate students Nishant Patil and Jie Deng have realized is that if nanotubes are always going to be somewhat askew, engineers will have to design circuits that can work regardless of where and how the tubes lie. They started by coming up with a single circuit element, a NAND gate, that was immune from the vagaries of its underlying nanotube layout.

From that single element that could function despite misalignments, they abstracted and generalized the math to come up with an algorithm that can guarantee a working design for any circuit element, Mitra says, even when a large number of nanotubes are misaligned.

Using simulations developed by Wong and Deng, the group has been able to show that not only do the algorithm's designs work, but they also don't appear to exact a significant financial, speed or energy price compared to traditional designs, Mitra says.

The key to determining whether a circuit element is immune to nanotube misalignment is breaking up each circuit element into a fine grid that can be analyzed mathematically. Doing this in the abstract with models allows engineers to determine which grid squares nanotubes must pass through and which they shouldn't traverse to make a design work correctly. To eliminate unwanted connections, nanotubes in so-called "illegal" regions can then be either chemically etched away or rendered electrically irrelevant in other ways.

The Stanford algorithm takes this all several steps further, applying sophisticated mathematics to automatically determine where the legal and illegal regions should be in the design of a circuit element with a particular function.

"You not only determine whether something is immune or not, but can automatically generate circuit designs that are guaranteed to be immune," Mitra says.

While the algorithm can overcome all the bad connections that errant nanotubes make, it cannot guarantee that a nanotube will always make a desired connection. Nanotubes also have other problems that remain unsolved, Mitra points out. Some, for example, always conduct electricity instead of switching on and off like a semiconductor should.

The group's next step is to move beyond simulation to build and test real circuit elements according to the algorithm's output. While more work is necessary to deliver the promise of nanotube technology, solving the misalignment problem would be a significant step.

"Carbon nanotube transistors show great promise as extensions to silicon transistors due to their fast speed, small size and lower energy consumption," Patil says. "Using this technique, we can make larger and more complex circuit blocks with them."

Wong speculates that the advance could eventually spill over from chips to assist engineers facing analogous challenges.

"A similar methodology can be applied to many emerging technologies," he says. "The concept of not having to define everything with high precision is germane to engineering robust systems."

The Microelectronics Advanced Research Corporation supported the research.


Story Source:

The above story is based on materials provided by Stanford University. The original article was written by David Orenstein, Communications and public relations manager at the Stanford School of Engineering.. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University. "Algorithm May Help Chipmakers Work With Tangles Of Nanotubes." ScienceDaily. ScienceDaily, 8 June 2007. <www.sciencedaily.com/releases/2007/06/070608142833.htm>.
Stanford University. (2007, June 8). Algorithm May Help Chipmakers Work With Tangles Of Nanotubes. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2007/06/070608142833.htm
Stanford University. "Algorithm May Help Chipmakers Work With Tangles Of Nanotubes." ScienceDaily. www.sciencedaily.com/releases/2007/06/070608142833.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins