Featured Research

from universities, journals, and other organizations

Astronomers May Have Solved Information Loss Paradox To Find Black Holes Do Not Form

Date:
June 21, 2007
Source:
Case Western Reserve University
Summary:
"Nothing there," is what Case Western Reserve University physicists concluded about black holes after spending a year working on complex formulas to calculate the formation of new black holes. In nearly 13 printed pages with a host of calculations, the research may solve the information loss paradox that has perplexed physicists for the past 40 years.

This illustration shows the thick dust torus that astronomers believe surrounds supermassive black holes and their accretion discs.
Credit: ESA / V. Beckmann (NASA-GSFC)

"Nothing there," is what Case Western Reserve University physicists concluded about black holes after spending a year working on complex formulas to calculate the formation of new black holes. In nearly 13 printed pages with a host of calculations, the research may solve the information loss paradox that has perplexed physicists for the past 40 years.

Related Articles


Case physicists Tanmay Vachaspati, Dejan Stojkovic and Lawrence M. Krauss report in the article, "Observation of Incipient Black Holes and the Information Loss Problem," that has been accepted for publication by Physical Review D.

"It's complicated and very complex," noted the researchers, regarding both the general problem and their particular approach to try to solve it.

The question that the physicists set out to solve is: what happens once something collapses into a black hole" If all information about the collapsing matter is lost, it defies the laws of quantum physics. Yet, in current thinking, once the matter goes over the event horizon and forms a black hole, all information about it is lost.

"If you define the black hole as some place where you can lose objects, then there is no such thing because the black hole evaporates before anything is seen to fall in," said Vachaspati.

The masses on the edge of the incipient black hole continue to appear into infinity that they are collapsing but never fall over inside what is known as the event horizon, the region from which there is no return, according to the researchers.

By starting out with something that was nonsingular and then collapsing that matter, they were determined to see if an event horizon formed, signaling the creation of a black hole.

The mass shrinks in size, but it never gets to collapse inside an event horizon due to evidence of pre-Hawking radiation, a non-thermal radiation that allows information of the nature of what is collapsing to be recovered far from the collapsing mass.

"Non-thermal radiation can carry information in it unlike thermal radiation. This means that an outside observer watching some object collapse receives non-thermal radiation back and may be able to reconstruct all the information in the initial object and so the information never gets lost," they said.

According to the researchers, if black holes exist, information formed in the initial state would disappear in the black hole through a burst of thermal radiation that carries no information about the initial state.

Using the functional Schrodinger formalism, the researchers suggest that information about the energy from radiation is long evaporated before an event horizon forms.

"An outside observer will never lose an object down a black hole," said Stojkovic. "If you are sitting outside and throwing something into the black hole, it will never pass over but will stay outside the event horizon even if one considers the effects of quantum mechanics. In fact, since in quantum mechanics the observer plays an important role in measurement, the question of formation of an event horizon is much more subtle to consider."

The physicists are quick to assure astronomers and astrophysicists that what is observed in gravity pulling masses together still holds true, but what is controversial about the new finding is that "from an external viewer's point it takes an infinite amount of time to form an event horizon and that the clock for the objects falling into the black hole appears to slow down to zero," said Krauss, director of Case's Center for Education and Research in Cosmology.

He continued "this is one of the factors that led us to rethink this problem, and we hope our proposal at the very least will stimulate a broader reconsideration of these issues."

If black holes exist in the universe, the astrophysicists speculate they were formed only at the beginning of time.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Cite This Page:

Case Western Reserve University. "Astronomers May Have Solved Information Loss Paradox To Find Black Holes Do Not Form." ScienceDaily. ScienceDaily, 21 June 2007. <www.sciencedaily.com/releases/2007/06/070620115358.htm>.
Case Western Reserve University. (2007, June 21). Astronomers May Have Solved Information Loss Paradox To Find Black Holes Do Not Form. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2007/06/070620115358.htm
Case Western Reserve University. "Astronomers May Have Solved Information Loss Paradox To Find Black Holes Do Not Form." ScienceDaily. www.sciencedaily.com/releases/2007/06/070620115358.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Space & Time News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) — Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) — More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) — NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) — NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins