Featured Research

from universities, journals, and other organizations

Researchers Develop New Method To Control Complex Systems

Date:
June 29, 2007
Source:
University of Virginia
Summary:
When signals in complex systems -- like hearts and brains -- go haywire, dangerous conditions, such as irregular heartbeats and epileptic seizures, can develop. Researchers are seeking new ways to control such systems without burning them out. A team of researchers in chemical engineering at the University of Virginia and in mathematics at Hokkaido University has developed a new method for engineering the behavior of complex dynamic systems made up of large numbers of individual components.

Engineering complex structures: Visual representation of a designed sequence of dynamical states.
Credit: University of Virginia Department of Chemical Engineering

When signals in complex systems -- like hearts and brains -- go haywire, dangerous conditions, such as irregular heartbeats and epileptic seizures, can develop. Researchers are seeking new ways to control such systems without burning them out.

A team of researchers in chemical engineering at the University of Virginia and in mathematics at Hokkaido University has developed a new method for engineering the behavior of complex dynamic systems made up of large numbers of individual components. They have demonstrated that mild signals can be effective in changing the behavior of a system of components. No such methodological approach existed previously.

In their experiments, the researchers applied a weak feedback signal to a rhythmic chemical system. By changing the feedback signal, the researchers were able to direct the system to change its activity - to spontaneous synchronization, desynchronization or cluster formation, which are patterns found in biological systems.

The experiments suggest that these signals may be used either to tune essential behavior - what pacemakers do to regulate an irregular heartbeat - or alter pathological behavior - which is what deep-brain “anti-pacemakers” do to stop the tremors caused by Parkinson's or other diseases. In such applications, a mild control is ideal because it can tune the system to the desired behavior without destroying its fundamental nature. Mild controls also have the potential to reduce side effects and increase the battery life of medical devices.

“You're trying to gently steer the system to go where you want it to go,” said John L. “Jack” Hudson, Wills Johnson Professor in the Department of Chemical Engineering at the University of Virginia's School of Engineering and Applied Science. “Sometimes you want to create order in the system and sometimes you want to destroy that order. The challenge is to dial up complex structures with mild inputs in order to change the system's behavior.”

The scientists' combined theoretical and experimental work offers a simple, yet flexible engineering method that may have potential applications in various fields, including communications, systems biology, chemical reaction engineering and medicine, where this research might eventually be used to improve existing treatments and develop new ones for tremors or seizures, among other chronic conditions.

This research was published online May 24 in Science Express, on the Web site of the prestigious journal Science, which is used to highlight important papers accepted for publication by the journal. The paper also will appear in the upcoming print edition of Science.

Along with Hudson, two of the researchers - Istvαn Z. Kiss, research scientist; and Craig G. Rusin, a doctoral student - are in the Department of Chemical Engineering at U.Va.'s School of Engineering and Applied Science. The fourth author, Hiroshi Kori, is a research associate in the Department of Mathematics, Hokkaido University, in Sapporo, Japan.

Their paper, titled “Engineering complex dynamical structures: sequential patterns and desynchronization,” is available online at http://www.sciencexpress.org.


Story Source:

The above story is based on materials provided by University of Virginia. Note: Materials may be edited for content and length.


Cite This Page:

University of Virginia. "Researchers Develop New Method To Control Complex Systems." ScienceDaily. ScienceDaily, 29 June 2007. <www.sciencedaily.com/releases/2007/06/070627122057.htm>.
University of Virginia. (2007, June 29). Researchers Develop New Method To Control Complex Systems. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2007/06/070627122057.htm
University of Virginia. "Researchers Develop New Method To Control Complex Systems." ScienceDaily. www.sciencedaily.com/releases/2007/06/070627122057.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins