Featured Research

from universities, journals, and other organizations

Network Model Predicts Risk Of Death In Sickle Cell Disease

Date:
July 12, 2007
Source:
Boston University
Summary:
Researchers have developed a method to estimate sickle cell disease severity and predict the risk of death in people with this disease. The reliability of the model was supported by analysis of two independent patient groups.

Researchers from Boston University School of Medicine (BUSM) and Boston University School of Public Health (BUSPH) have developed a method to estimate sickle cell disease severity and predict the risk of death in people with this disease. The study appears online in the June issue of the journal Blood.

Sickle cell disease is caused by mutations in the beta-hemoglobin gene (HBB). Individuals having identical pairs of genes for the HBB glu6val mutation (HbS) have sickle cell anemia; individuals with both HbS and HbC mutations have sickle cell-HbC (HbSC) disease. Both of these types of sickle cell-disease have extremely variable characteristics. While the median age of death in the United States was estimated to be in the fifth decade for patients with sickle cell anemia, some individuals die young while others live into their eight or ninth decade.

Using data from 3,380 adult and pediatric patients accounting for all common genotypes of sickle cell disease, researchers developed a predictive model of disease severity, using Bayesian network modeling. This type of network modeling can represent the mutual and hierarchal relationships among many variables using probalistic rules, making it more appropriate for prognostic and diagnostic applications, according to lead author, Paola Sebastiani, PhD, associate professor of biostatistics in BUSPH.

The analysis revealed the complex network of associations between laboratory tests and clinical events that modulate the risk of death in sickle cell disease. Along with previously known risk factors for mortality, like renal insufficiency and leukocytosis, the network identified laboratory markers of the severity of the hemolytic anemia and its associated clinical events as contributing risk factors. Researchers computed the risk of death within 5 years with a disease severity score ranging from zero (least severe) to one (most severe). Patients were followed on average for five years. Sepsis was among the most frequent case of death (14%) followed by cerebrovascular accident (10%).

The reliability of the model was supported by analysis of two independent patient groups. In group one, the severity score was related to disease severity based on the opinion of expert clinicians. In the other group, the severity score was related to the presence and severity of pulmonary hypertension and the risk of death.

"This model can be used to compute a personalized disease severity score allowing therapeutic decisions to be made according to the prognosis," said senior author Martin Steinberg, MD, professor of medicine at BUSM. "The severity score could also serve as an estimate of overall disease severity in genotype-phenotype association studies and provide an additional method to study the complex pathophysiology of sickle cell disease."


Story Source:

The above story is based on materials provided by Boston University. Note: Materials may be edited for content and length.


Cite This Page:

Boston University. "Network Model Predicts Risk Of Death In Sickle Cell Disease." ScienceDaily. ScienceDaily, 12 July 2007. <www.sciencedaily.com/releases/2007/07/070711105618.htm>.
Boston University. (2007, July 12). Network Model Predicts Risk Of Death In Sickle Cell Disease. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2007/07/070711105618.htm
Boston University. "Network Model Predicts Risk Of Death In Sickle Cell Disease." ScienceDaily. www.sciencedaily.com/releases/2007/07/070711105618.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins