Featured Research

from universities, journals, and other organizations

New Catalysts May Create More, Cheaper Hydrogen

Date:
August 24, 2007
Source:
DOE/Argonne National Laboratory
Summary:
A new class of catalysts may help scientists and engineers overcome some of the hurdles that have inhibited the production of hydrogen for use in fuel cells. Most hydrogen produced industrially is created through steam reforming. In this process, a nickel-based catalyst is used to react natural gas with steam to produce pure hydrogen and carbon dioxide.

A new class of catalysts created at the U.S. Department of Energy's Argonne National Laboratory may help scientists and engineers overcome some of the hurdles that have inhibited the production of hydrogen for use in fuel cells.

Argonne chemist Michael Krumpelt and his colleagues in Argonne's Chemical Engineering Division used "single-site" catalysts based on ceria or lanthanum chromite doped with either platinum or ruthenium to boost hydrogen production at lower temperatures during reforming. "We've made significant progress in bringing the rate of reaction to where applications require it to be," Krumpelt said.

Most hydrogen produced industrially is created through steam reforming. In this process, a nickel-based catalyst is used to react natural gas with steam to produce pure hydrogen and carbon dioxide.

These nickel catalysts typically consist of metal grains tens of thousands of atoms in diameter that speckle the surface of metal oxide substrates. Conversely, the new catalysts that Krumpelt developed consist of single atomic sites embedded in an oxide matrix. The difference is akin to that between a yard strewn with several large snowballs and one covered by a dusting of flakes. Because some reforming processes tend to clog much of the larger catalysts with carbon or sulfur byproducts, smaller catalysts process the fuel much more efficiently and can produce more hydrogen at lower temperatures.

Krumpelt's initial experiments with single-site catalysts used platinum in gadolinium-doped ceria that, though it started to reform hydrocarbons at temperatures as low as 450 degrees Celsius, became unstable at higher temperatures. As he searched for more robust materials that would support the oxidation-reduction reaction cycle at the heart of hydrocarbon reforming, Krumpelt found that if he used ruthenium – which costs only one percent as much as platinum – in a perovskite matrix, then he could initiate reforming at 450 degrees Celsius and still have good thermal stability.

The use of the LaCrRuO3 perovskite offers an additional advantage over traditional catalysts. While sulfur species in the fuel degraded the traditional nickel, and to a lesser extent even the single-site platinum catalysts, the crystalline structure of the perovskite lattice acts as a stable shell that protects the ruthenium catalyst from deactivation by sulfur.

Krumpelt will present an invited keynote talk describing these results during the 234th national meeting of the American Chemical Society in Boston from August 18 to 23.


Story Source:

The above story is based on materials provided by DOE/Argonne National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Argonne National Laboratory. "New Catalysts May Create More, Cheaper Hydrogen." ScienceDaily. ScienceDaily, 24 August 2007. <www.sciencedaily.com/releases/2007/08/070821112232.htm>.
DOE/Argonne National Laboratory. (2007, August 24). New Catalysts May Create More, Cheaper Hydrogen. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2007/08/070821112232.htm
DOE/Argonne National Laboratory. "New Catalysts May Create More, Cheaper Hydrogen." ScienceDaily. www.sciencedaily.com/releases/2007/08/070821112232.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins