Featured Research

from universities, journals, and other organizations

Making Gene Therapy Safer: Delivering Genes Via Polymers

Date:
September 16, 2007
Source:
Massachusetts Institute of Technology
Summary:
In work that could lead to safe and effective techniques for gene therapy, MIT researchers have found a way to fine-tune the ability of biodegradable polymers to deliver genes. Gene therapy, which involves inserting new genes into patients' cells to fight diseases like cancer, holds great promise but has yet to realize its full potential, in part because of safety concerns over the conventional technique of using viruses to carry the genes.

Structure of a piece of a biodegradable polymer used for gene delivery.
Credit: Jordan Green/MIT

In work that could lead to safe and effective techniques for gene therapy, MIT researchers have found a way to fine-tune the ability of biodegradable polymers to deliver genes.

Gene therapy, which involves inserting new genes into patients' cells to fight diseases like cancer, holds great promise but has yet to realize its full potential, in part because of safety concerns over the conventional technique of using viruses to carry the genes.

The new MIT work, published this week in Advanced Materials, focuses on creating gene carriers from synthetic, non-viral materials. The team is led by Daniel Anderson, research associate in MIT's Center for Cancer Research.

"What we wanted to do is start with something that's very safe-a biocompatible, degradable polymer-and try to make it more effective, instead of starting with a virus and trying to make it safer," said Jordan Green, a graduate student in biological engineering and co-first author of the paper.

Gregory Zugates, a former graduate student in chemical engineering now at WMR Biomedical, Inc., is also a co-first author of the paper.

Gene therapy has been a field of intense research for nearly 20 years. More than 1,000 gene-therapy clinical trials have been conducted, but to date there are no FDA-approved gene therapies. Most trials use viruses as carriers, or vectors, to deliver genes.

However, there are risks associated with using viruses. As a result, many researchers have been working on developing non-viral methods to deliver therapeutic genes.

The MIT scientists focused on three poly(beta-amino esters), or chains of alternating amine and diacrylate groups, which had shown potential as gene carriers. They hoped to make the polymers even more efficient by modifying the very ends of the chains.

When mixed together, these polymers can spontaneously assemble with DNA to form nanoparticles. The polymer-DNA nanoparticle can act in some ways like an artificial virus and deliver functional DNA when injected into or near the targeted tissue.

The researchers developed methods to rapidly optimize and test new polymers for their ability to form DNA nanoparticles and deliver DNA. They then chemically modified the very ends of the degradable polymer chains, using a library of different small molecules.

"Just by changing a couple of atoms at the end of a long polymer, one can dramatically change its performance," said Anderson. "These minor alterations in polymer composition significantly increase the polymers' ability to deliver DNA, and these new materials are now the best non-viral DNA delivery systems we've tested."

The polymers have already been shown to be safe in mice, and the researchers hope to ultimately run clinical trials with their modified polymers, said Anderson.

Non-viral vectors could prove not only safer than viruses but also more effective in some cases. The polymers can carry a larger DNA payload than viruses, and they may avoid the immune system, which could allow multiple therapeutic applications if needed, said Green.

One promising line of research involves ovarian cancer, where the MIT researchers, in conjunction with Janet Sawicki at the Lankenau Institute for Medical Research, have demonstrated that these polymer-DNA nanoparticles can deliver DNA at high levels to ovarian tumors without harming healthy tissue.

Other MIT authors on the paper are Nathan Tedford, a former graduate student in biological engineering now at Epitome Biosystems; Linda Griffith, professor of biological engineering; Douglas Lauffenberger, head of biological engineering, and Institute Professor Robert Langer. Sawicki and Yu-Hung Huang of the Lankenau Institute are also co-authors.

The research was funded by the National Institutes of Health, the Department of Defense and the National Science Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Making Gene Therapy Safer: Delivering Genes Via Polymers." ScienceDaily. ScienceDaily, 16 September 2007. <www.sciencedaily.com/releases/2007/09/070907095614.htm>.
Massachusetts Institute of Technology. (2007, September 16). Making Gene Therapy Safer: Delivering Genes Via Polymers. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2007/09/070907095614.htm
Massachusetts Institute of Technology. "Making Gene Therapy Safer: Delivering Genes Via Polymers." ScienceDaily. www.sciencedaily.com/releases/2007/09/070907095614.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
Too Few Teens Receiving HPV Vaccination, CDC Says

Too Few Teens Receiving HPV Vaccination, CDC Says

Newsy (July 24, 2014) The Centers for Disease Control and Prevention is blaming doctors for the low number of children being vaccinated for HPV. Video provided by Newsy
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins