Featured Research

from universities, journals, and other organizations

Signal That Switches On Eye Development Discovered -- Could Lead To 'Eye In A Dish'

Date:
October 26, 2007
Source:
University of Warwick
Summary:
Researchers have uncovered a crucial signal that switches on eye development. This discovery will greatly assist researchers looking at stem cells connected to eye development and opens up an avenue of research that could eventually lead to an 'eye in a dish.'

Three eyes on a tadpole.
Credit: Image courtesy of University of Warwick

Researchers at the University of Warwick, funded by Wellcome Trust, have uncovered a crucial signal that switches on eye development. This discovery will greatly assist researchers looking at stem cells connected to eye development and opens up an avenue of research that could eventually lead to an "eye in a dish".

The researchers were exploring whether release of ATP (an important signaling and energy carrying molecule) influenced the development of locomotion in frogs. Their experiment introduced molecules called ectoenzymes (normally found on the outside surface of cells) into frog embryos at one of the earliest stages when the frogs-to-be were just 8 cells in size. Three ectoenzymes were used: E-NTPDase1, E-NTPDase2 and E-NTPDase3. These ectoenzymes degrade ATP following its release from cells, however each version of the ectoenzyme has slightly different effects on this degradation.

The Warwick research team's interest in locomotion was quickly eclipsed when they were amazed to find that the introduction of just one of the ectoenzemes (E-NTPDase2) had a dramatic affect on eye development in the tadpoles grown from these embryos. When introduced in cells that would form the head area of the tadpole multiple eyes appeared to be created. That was not the only surprise. When it was introduced in some cells that formed body parts outside the head area it could still produce an additional "ectopic" eye leading to tadpoles with an additional eye in their side, abdomen or even along their tail.

E-NTPDase2 quickly latches on to ATP converting it to ADP. This meant that where and when the researchers introduced E-NTPDase2 it led to nearby cells experiencing much higher levels of ADP. The Warwick team hypothesized that ATP must be released in a short burst from the location where the eye will develop so that it can be converted to ADP by E-NTPDase2, thereby providing the trigger for eye development. They were able to measure these short bursts of ATP using ATP sensors specially developed by Professor Dale. This is the first time researchers have been able to see and measure bursts of ATP so early in the development of living creatures.

The genes that initiate and direct eye development are well known and are collectively termed the Eye Field Transcription Factors" (EFTFs). One of the mysteries of the field is how these genes get turned on in the correct location and at the correct time to initiate eye development. The Warwick research shows that this short burst of ATP followed by accumulation of ADP is a key signal for initiating expression of the EFTFs and hence the development of the eye.

The discovery of this surprising new signal that literally switches on eye development it is not restricted to frogs. Mutations to the E-NTPDase2 gene on the human 9th chromosome is already known to cause severe head and eye defects. This suggests that this newly discovered mechanism for triggering eye development applies across a wide range of species.

This new understanding of how eye development is triggered will greatly assist researchers exploring stem cells connected to eye development and opens up an avenue of a research that could in just a few decades lead to the ability to produce an "eye in a dish."

The University of Warwick research team led by Professor Nick Dale and Professor Elizabeth Jones from the University of Warwick's Biological Sciences Department have published their work 25th October 2007, in Nature in a paper entitled Purine-mediated signaling triggers eye development.


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Cite This Page:

University of Warwick. "Signal That Switches On Eye Development Discovered -- Could Lead To 'Eye In A Dish'." ScienceDaily. ScienceDaily, 26 October 2007. <www.sciencedaily.com/releases/2007/10/071024130441.htm>.
University of Warwick. (2007, October 26). Signal That Switches On Eye Development Discovered -- Could Lead To 'Eye In A Dish'. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2007/10/071024130441.htm
University of Warwick. "Signal That Switches On Eye Development Discovered -- Could Lead To 'Eye In A Dish'." ScienceDaily. www.sciencedaily.com/releases/2007/10/071024130441.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins