Featured Research

from universities, journals, and other organizations

'Heftier' Atoms Reduce Friction At The Nanoscale, Study Reveals

Date:
November 2, 2007
Source:
University of Pennsylvania
Summary:
Mechanical engineers have discovered that friction between two sliding bodies can be reduced at the molecular, or nanoscale, level by changing the mass of the atoms at the surface. 'Heavier' atoms vibrate at a lower frequency, reducing energy lost during sliding.

A research team led by a University of Pennsylvania mechanical engineer has discovered that friction between two sliding bodies can be reduced at the molecular, or nanoscale, level by changing the mass of the atoms at the surface. Heavier atoms vibrate at a lower frequency, reducing energy lost during sliding.

Penn researchers, along with colleagues at the University of Houston and the University of Wisconsin now at IBMs Zurich Research Laboratory and the Argonne National Laboratory, used atomic force microscopy like an old-fashioned record needle, sliding it along single-crystal diamond and silicon surfaces to measure the force of friction. Before doing so, researchers coated each crystal surface with one of two adsorbates designed to best exhibit variations in the mass of the atoms at the surface without changing the chemistry. The first adsorbate was a single layer of hydrogen atoms. The second was its chemically similar but heavier cousin, deuterium, a hydrogen atom with a neutron stuffed inside its nucleus.

Our study found that the larger mass of the terminating atoms at the surface, in this case deuterium, led to less energy lost to heat in the system, Robert Carpick, associate professor of mechanical engineering and applied mechanics at Penn, said. The larger atomic mass of deuterium results in a lower natural vibration frequency of the atoms. These atoms collide less frequently with the tip sliding over it, and thus energy is more slowly dissipated away from the contact.

The single layer of atoms at the surface of each crystal acts as an energy transfer medium, absorbing kinetic energy from the tip of the atomic force microscope. The tips were less than 50nm in radius at their ends. How much energy is absorbed is dependent, researchers found, on the adsorbates natural atomic vibration frequencies. The heavier an atom, the lower its vibrational frequency. The lighter an atom, the faster the vibrations and thus the faster the dissipation of energy from the contact in the sample. Keeping the atoms chemically similar avoided any changes arising from chemical bonding.

The Penn findings provide a better understanding of the nature of friction, which lacks a comprehensive model at the fundamental level.

We know how some properties -- adhesion, roughness and material stiffness for example -- contribute to friction over several length scales, but this work reveals how truly atomic-scale phenomena can and do play a meaningful role, Matthew Brukman, a contributor to the research, said.

Industry has long been concerned with ways to reduce friction between objects, both to maintain the energy of the system as well as to reduce heat-generation and wear, which can weaken machinery and materials to the breaking point. The authors note that improved friction models can be used for the opposite effect; makers of some mechanical components such as automobile clutches may be interested in techniques to increase friction without changing the wear or adhesion of materials.

Even in the absence of rough edges or wear between sliding bodies, friction between the atoms at the surface causes vibrations which dissipate energy, but the exact mechanisms of this process remain unresolved. Scientists continue to explore the details of friction, and other open questions include the effects of environmental variables such as temperature and atmosphere.

The study appears in the November issue of the journal Science. The research was performed by Carpick and Brukman of the Department of Materials Science and Engineering in Penn's School of Engineering and Applied Science; Rachel J. Cannara, now of the IBM Zurich Research Laboratory; Anirudha V. Sumant, now at Argonne National Laboratory; and Steven Baldelli and Katherine Cimatu of the University of Houston.

The research was supported by the National Science Foundation, an NSF Graduate Research Fellowship and the Air Force Office of Scientific Research.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania. "'Heftier' Atoms Reduce Friction At The Nanoscale, Study Reveals." ScienceDaily. ScienceDaily, 2 November 2007. <www.sciencedaily.com/releases/2007/11/071101170719.htm>.
University of Pennsylvania. (2007, November 2). 'Heftier' Atoms Reduce Friction At The Nanoscale, Study Reveals. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2007/11/071101170719.htm
University of Pennsylvania. "'Heftier' Atoms Reduce Friction At The Nanoscale, Study Reveals." ScienceDaily. www.sciencedaily.com/releases/2007/11/071101170719.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins