Featured Research

from universities, journals, and other organizations

Explosives On A Chip: Unique Structure Enables New Generation Of Military Micro-detonators

Date:
December 23, 2007
Source:
Georgia Institute of Technology
Summary:
Tiny copper structures with pores at both the nanometer and micron size scales could play a key role in the next generation of detonators used to improve the reliability, reduce the size and lower the cost of certain military munitions.

Copper structure shown here is a precursor material for explosive compounds used in military detonators. The copper structure can be formed on chips, then converted to an explosive compound. The compound is being used to improve US Navy detonator devices.
Credit: Gary Meek

Tiny copper structures with pores at both the nanometer and micron size scales could play a key role in the next generation of detonators used to improve the reliability, reduce the size and lower the cost of certain military munitions.

Developed by a team of scientists from the Georgia Tech Research Institute (GTRI) and the Indian Head Division of the Naval Surface Warfare Center, the highly-uniform copper structures will be incorporated into integrated circuits -- then chemically converted to millimeter-diameter explosives. Because they can be integrated into standard microelectronics fabrication processes, the copper materials will enable micro-electromechanical (MEMS) fuzes for military munitions to be mass-produced like computer chips.

"An ability to tailor the porosity and structural integrity of the explosive precursor material is a combination we've never had before," said Jason Nadler, a GTRI research engineer. "We can start with the Navy's requirements for the material and design structures that are able to meet those requirements. We can have an integrated design tool able to develop a whole range of explosive precursors on different size scales."

Nadler uses a variety of templates, including microspheres and woven fabrics, to create regular patterns in copper oxide paste whose viscosity is controlled by the addition of polymers. He then thermochemically removes the template and converts the resulting copper oxide structures to pure metal, retaining the patterns imparted by the template. The size of the pores can be controlled by using different templates and by varying the processing conditions.

So far, he's made copper structures with channel sizes as small as a few microns -- with structural components that have nanoscale pores.

Based on feedback from the Navy scientists, Nadler can tweak the structures to help optimize the overall device -- known as a fuze -- which controls when and where a munition will explode.

"We are now able to link structural characteristics to performance," Nadler noted. "We can produce a technically advanced material that can be tailored to the thermodynamics and kinetics that are needed using modeling techniques."

Beyond the fabrication techniques, Nadler developed characterization and modeling techniques to help understand and control the fabrication process for the unique copper structures, which may also have commercial applications.

The copper precursor developed in GTRI is a significant improvement over the copper foam material that Indian Head had previously been evaluating. Produced with a sintered powder process, the foam was fragile and non-uniform, meaning Navy scientists couldn't precisely predict reliability or how much explosive would be created in each micro-detonator.

"GTRI has been able to provide us with material that has well-controlled and well-known characteristics," said Michael Beggans, a scientist in the Energetics Technology Department of the Indian Head Division of the Naval Surface Warfare Center. "Having this material allows us to determine the amount of explosive that can be formed in the MEMS fuze. The size of that charge also determines the size and operation of the other components."

The research will lead to a detonator with enhanced capabilities. "The long-term goal of the MEMS Fuze program is to produce a low-cost, highly-reliable detonator with built-in safe and arm capabilities in an extremely small package that would allow the smallest weapons in the Navy to be as safe and reliable as the largest," Beggans explained.

Reducing the size of the fuze is part of a long-term strategy toward smarter weapons intended to reduce the risk of collateral damage. That will be possible, in part, because hundreds of fuzes, each about a centimeter square, can be fabricated simultaneously using techniques developed by the microelectronics industry.

"Today, everything is becoming smaller, consuming less power and offering more functionality," Beggans added. "When you hear that a weapon is 'smart,' it's really all about the fuze. The fuze is 'smart' in that it knows the exact environment that the weapon needs to be in, and detonates it at the right time. The MEMS fuze would provide 'smart' functionality in medium-caliber and sub-munitions, improving results and reducing collateral damage."

Development and implementation of the new fuze will also have environmental and safety benefits.

"Practical implementation of this technology will enable the military to reduce the quantity of sensitive primary explosives in each weapon by at least two orders of magnitude," said Gerald R. Laib, senior explosives applications scientist at Indian Head and inventor of the MEMS Fuze concept. "This development will also vastly reduce the use of toxic heavy metals and waste products, and increase the safety of weapon production by removing the need for handling bulk quantities of sensitive primary explosives."

The next step will be for Indian Head to integrate all the components of the fuze into the smallest possible package -- and then begin producing the device in large quantities.

A specialist in metallic and ceramic cellular materials, Nadler said the challenge of the project was creating structures porous enough to be chemically converted in a consistent way -- while retaining sufficient mechanical strength to withstand processing and remain stable in finished devices.

"The ability to design things on multiple size scales at the same time is very important," he added. "Designing materials on the nano-scale, micron-scale and even the millimeter-scale simultaneously as a system is very powerful and challenging. When these different length scales are available, a whole new world of capabilities opens up."


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "Explosives On A Chip: Unique Structure Enables New Generation Of Military Micro-detonators." ScienceDaily. ScienceDaily, 23 December 2007. <www.sciencedaily.com/releases/2007/12/071218105422.htm>.
Georgia Institute of Technology. (2007, December 23). Explosives On A Chip: Unique Structure Enables New Generation Of Military Micro-detonators. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2007/12/071218105422.htm
Georgia Institute of Technology. "Explosives On A Chip: Unique Structure Enables New Generation Of Military Micro-detonators." ScienceDaily. www.sciencedaily.com/releases/2007/12/071218105422.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins