Featured Research

from universities, journals, and other organizations

'Solar Flare' Detected From Star 150 Light Years Away

Date:
December 19, 2007
Source:
ESO
Summary:
Using observations from ESO's VLT, astronomers were able for the first time to reconstruct the site of a flare on a solar-like star located 150 light years away, a feat comparable at looking from the Earth at the footprints left by an astronaut on the Moon.

Mapping spots on Speedy Mic. Doppler maps of the highly active star BO Mic ('Speedy Mic') at different rotation phases (indicated on top of the maps). Spot coverage is rendered as black, dark and light orange areas, representing 100%, 67% and 33% spot coverage, respectively. A few spots are near the visible pole, while most spots are asymmetrically distributed at mid-latitudes. The blue circle indicates the flare observed in October 2006 using ESO's VLT and ESA's XMM-Newton satellite. Grid lines mark latitudes and longitudes in 30 degrees steps.
Credit: Image courtesy of ESO

Using observations from ESO's VLT, astronomers were able for the first time to reconstruct the site of a flare on a solar-like star located 150 light years away. The study of this young star, nicknamed 'Speedy Mic' because of its fast rotation, will help scientists better understand the youth of our Sun.

Related Articles


The astronomers [1] observed the star BO Microscopii [2] during two consecutive nights in October 2006, simultaneously with the UVES spectrograph on ESO's Very Large Telescope and ESA's XMM-Newton X-ray satellite.

Using a technique called 'Doppler imaging' [3], the astronomers reconstructed images of the surface of the star, detecting the presence of several spots. A few are near the visible pole, while most spots are asymmetrically distributed at mid-latitudes.

"The image we could secure of Speedy Mic is, given its distance, a real achievement, that allows us to localise for the first time ever the source of a flare and its surrounding," says Uwe Wolter, lead author of the paper relating the discovery.

The X-ray observations indeed identified several flares, which are sudden and vast releases of energy. For one of them, the astronomers could pinpoint its origin on the surface of the star. The flare, lasting about 4 hours, was a hundred times more energetic than a large solar flare and considerably larger than solar coronal loops.

The surprising finding, the team says, was the location of the flare. Contrary to our Sun, the site of the observed flare does not correspond to the detected spots [4].

"Interestingly, the flare occurs on a rather inconspicuous portion of the star's surface, away from the main concentration of activity in terms of dark spots," explains Wolter.

Speedy Mic is a very young star: with an age of only about 30 million years, it is roughly 150 times younger than the Sun. "It is very likely that our young Sun was a fast rotator as well," says Wolter. "Studying Speedy Mic is thus like observing our own host star while still in its infancy. These studies may also contribute to the understanding of current solar eruptions which can cause havoc in our telecommunications and power distributions."

The team reports their results in the journal Astronomy and Astrophysics ("Doppler imaging an X-ray flare on the ultrafast rotator BO Mic - A contemporaneous multiwavelength study using XMM-Newton and VLT", by. U. Wolter et al.).

Notes

  1. The team is composed of U. Wolter, J. Robrade, and J. Schmitt (Hamburg Observatory, Germany), and J. Ness (Arizona State University, USA).
  2. BO Microscopii (or BO Mic and nicknamed 'Speedy Mic') is a young star with a mass about 90 % the mass of our Sun. It is located 150 light years away towards the Microscope constellation. Speedy Mic owns its name because of its very fast rotation: it completes a full turn in about 9 hours. The object rotates thus 66 times as fast as our Sun, which results in much stronger magnetic fields than on the Sun.
  3. Speedy Mic is a star slightly smaller than the Sun and is about ten million times further away from us than the Sun. Trying to see spots on its surface is thus as challenging as trying to directly obtain a photograph of the footsteps of Neil Armstrong on the Moon, and be able to see details in it. This is impossible to achieve even with the best telescopes: to obtain an image with such amount of details, you would need a telescope with a 400 km wide mirror! Astronomers make therefore use of indirect imaging techniques, such as Doppler imaging, to achieve this incredible prowess. Doppler imaging makes use of the information contained in the slightly changing spectra observed as a star rotates. In this case, the astronomers obtained 142 spectra of the star with the UVES spectrograph on ESO's VLT.
  4. Sunspots, which are cooler, but still very hot regions of the Sun's surface, are known to be regions of intense magnetic activity.

Story Source:

The above story is based on materials provided by ESO. Note: Materials may be edited for content and length.


Cite This Page:

ESO. "'Solar Flare' Detected From Star 150 Light Years Away." ScienceDaily. ScienceDaily, 19 December 2007. <www.sciencedaily.com/releases/2007/12/071219103049.htm>.
ESO. (2007, December 19). 'Solar Flare' Detected From Star 150 Light Years Away. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2007/12/071219103049.htm
ESO. "'Solar Flare' Detected From Star 150 Light Years Away." ScienceDaily. www.sciencedaily.com/releases/2007/12/071219103049.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Space & Time News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Crew Blasts Off for Int'l Space Station

Raw: Crew Blasts Off for Int'l Space Station

AP (Nov. 23, 2014) A Russian capsule carrying three astronauts from Russia, the United States and Italy has blasted off for the International Space Station. (Nov. 23) Video provided by AP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Crowdfunded Moon Mission Offers To Store Your Digital Memory

Crowdfunded Moon Mission Offers To Store Your Digital Memory

Newsy (Nov. 19, 2014) Lunar Mission One is offering to send your digital memory (or even your DNA) to the moon to be stored for a billion years. Video provided by Newsy
Powered by NewsLook.com
Accidents Ignite Debate on US Commercial Space Travel

Accidents Ignite Debate on US Commercial Space Travel

AFP (Nov. 19, 2014) Serious accidents with two US commercial spacecraft within a week of each-other in October have re-ignited the debate over the place of private corporations in the exploration of space. Duration: 02:08 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins