Featured Research

from universities, journals, and other organizations

Depletion Of One Antioxidant Linked To Parkinson's In Mice

Date:
December 21, 2007
Source:
Buck Institute for Age Research
Summary:
Scientists have shown that mice suffering from a depletion of the antioxidant glutathione in dopamine-producing neurons developed nerve damage and symptoms associated with Parkinson's disease (PD) in humans. Dopamine is a neurotransmitter produced in the mid-brain which facilitates many critical functions, including motor skills. Past studies have shown that depletion of the naturally occurring antioxidant in the affected area of the brain is one of the earliest signs of PD, but this study shows that glutathione depletion may be a causal factor in the disorder.

Scientists at the Buck Institute have shown that mice suffering from a depletion of the antioxidant glutathione in dopamine-producing neurons developed nerve damage and symptoms associated with Parkinson’s disease (PD) in humans. Dopamine is a neurotransmitter produced in the mid-brain which facilitates many critical functions, including motor skills.

Past studies have shown that depletion of the naturally occurring antioxidant in the affected area of the brain is one of the earliest signs of PD, but this study shows that glutathione depletion may be a causal factor in the disorder.

In the course of their research, Buck Institute scientists created a new model for studying PD, a progressive, incurable neurodegenerative disorder that affects 1.5 million Americans and results in tremor, slowness of movement and rigidity. They bred mice that can be chemically induced to develop a depletion of glutathione in the dopaminergic neurons as adults (animals unable to create glutathione would not survive in the womb).

By inducing the depletion at various stages of the adult lifecycle scientists researchers also highlighted the connection between aging and PD. Mice induced to have glutathione depletion as young adults did not develop Parkinsonian-like nerve damage and symptoms, while those who suffered from the depletion in late middle age did develop a loss of dopaminergic neurons specifically related to PD.

In addition, the study suggests that loss of glutathione in the affected neurons may impact on energy production in the mitochondria, the “power plant” of the cells. This appears to involve a particular enzyme complex called mitochondrial complex I. Enzymatic activity of this complex has been found to be compromised in PD patients, but to date it has not been clear how this inhibition occurs.

Glutathione is recognized as a detoxifying antioxidant that helps the body repair damage from stress, pollution, infection and damage. While available in supplemental form, the antioxidant does not easily cross the blood-brain barrier. A pilot study in 1996 in which a small group of untreated PD patients were given daily intravenous infusions of glutathione over the period of a month reportedly resulted in a significant improvement in disability. “

Whether such treatment was effective in altering brain levels of glutathione or in having lasting effects is unclear,” said Andersen. “However, our data suggests that maintaining glutathione levels is critical for protecting neurons associated with PD from neurodegeneration. This work also points to glutathione replacement as a possible therapeutic avenue for PD and other related disorders.”

“The novelty of this study is in finding a way to decrease glutathione synthesis in neural tissue by genetic manipulation and in demonstrating that this appears to allow inactivation of a critical component of mitochondrial function through the same mechanism that could only be previously demonstrated in a cell culture model,” said Henry Jay Forman, PhD, Professor, School of Natural Sciences, UC Merced. “The implications for the role of glutathione depletion in the mechanism of Parkinson’s disease are clear.”

Results of the study, led by faculty member Julie Andersen PhD, are to be published in the December 19, 2007 issue of The Journal of Neuroscience.

Joining Andersen in the study were Shankar Chinta, Jyothi Kumar, Mike Hsu, R. Subramanian, Deepi Kaur, Anand Rane and David Nicholls, also of the Buck Institute, along with Jinah Choi, from the University of California at Merced. The project was supported by NIH grant AG121141 to J.K.A.; S. J. Chinta is a recipient of a postdoctoral fellowship from the American Parkinson’s Disease Association.


Story Source:

The above story is based on materials provided by Buck Institute for Age Research. Note: Materials may be edited for content and length.


Cite This Page:

Buck Institute for Age Research. "Depletion Of One Antioxidant Linked To Parkinson's In Mice." ScienceDaily. ScienceDaily, 21 December 2007. <www.sciencedaily.com/releases/2007/12/071220232034.htm>.
Buck Institute for Age Research. (2007, December 21). Depletion Of One Antioxidant Linked To Parkinson's In Mice. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2007/12/071220232034.htm
Buck Institute for Age Research. "Depletion Of One Antioxidant Linked To Parkinson's In Mice." ScienceDaily. www.sciencedaily.com/releases/2007/12/071220232034.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins