Featured Research

from universities, journals, and other organizations

Cell Division Studies Hint At Future Cancer Therapy

Date:
January 25, 2008
Source:
Medical College of Georgia
Summary:
When a cell's assets get divided between daughter cells, Dr. Quansheng Du wants to make sure both offspring do well. He's dissecting the complex, continuous and amazing process that enables one cell to become two. When all goes well, cell division, or mitosis, helps repopulate a damaged organ or replenish endogenous stem cells. When it goes badly, it can result in cancer or developmental defects.

Dr. Quansheng Du.
Credit: Medical College of Georgia

When a cell's assets get divided between daughter cells, Dr. Quansheng Du wants to make sure both offspring do well. He's dissecting the complex, continuous and amazing process that enables one cell to become two.

Related Articles


When all goes well, cell division, or mitosis, helps repopulate a damaged organ or replenish endogenous stem cells. When it goes badly, it can result in cancer or developmental defects.

"What we are trying to understand is how cells divide," says Dr. Du, cell biologist at the Medical College of Georgia, who recently received $2 million in grants from the National Institutes of Health and the American Cancer Society to pursue his studies.

He focuses on the mitotic spindle, a sort of demarcation line that helps a dividing cell divvy up its genetic information. Once a cell decides to divide, it duplicates its genetic material and the nuclear envelope containing the material dissolves. Microtubules, stick-like projections that look like spokes on a wheel, start moving, reorganizing into a spindle-shaped structure that attaches and aligns the genetic material at the center of the spindle. The cell, sensing the microtubule attachment, initiates a process that pulls the duplicated genetic material apart.

The outcome of normal cell division is typically two cells that look just like the original. In a culture dish and in humans, the process takes about an hour.

Not every cell can divide. Terminally differentiated cells, such as neurons and muscle cells, can't.

However, stem cells, known for their flexibility, divide well and at least three ways. They can divide genetic material evenly, forming two identical stem cells. They can undergo asymmetric cell division, birthing one identical stem cell as well as a new daughter cell that differentiates into another cell type, such as a skin cell or neuron. They can even make two uniquely differentiated cells, thus depleting the stem cell.

During mammalian development and tissue maintenance, stem cells are constantly balancing between self-renewal and differentiation by adapting different types of cell division.

While a postdoctoral fellow at the University of Virginia, Dr. Du was studying cell polarity, essential to asymmetric cell division because it attracts so-called cell fate determinants to one side of the mother cell and directs spindle orientation.

In work published in Nature Cell Biology, Current Biology and Cell, he detailed a group of proteins critical for spindle organization and positioning in mammalian cells.

These proteins may help determine cell fate after asymmetric cell division as well, he says: for example, determining whether the daughter cells keep being stem cells or differentiate into another cell type.

Now, he wants to know how these proteins get where they need to be and how they cooperate with other proteins to organize the spindle and direct its orientation.

These details may eventually lead to better cancer treatment, such as disrupting mitotic spindle organization so cancer cells cannot divide, Dr. Du says.

The relatively recent discoveries of cancer stem cells make the possibilities even more intriguing.

"The current cancer stem cell theory is that it's actually just a small population of cells within the tumor that are the original cancer-initiating cells," says Dr. Du. Still if each cancer stem cell in that small population divides, the numbers add up quickly.

"How normal stem cells become cancer stem cells is not clear," he says. "Abnormal asymmetric stem cell division, which will break the balance between stem cell self-renewal and differentiation, may be an early event that drives the development of cancer stem cells."

Understanding the mechanisms of stem cell division will provide clues for targeted cancer therapy against these cancer stem cells. Manipulating the balance toward differentiation, for example, would probably lead to the depletion of cancer stem cells, Dr. Du says.


Story Source:

The above story is based on materials provided by Medical College of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia. "Cell Division Studies Hint At Future Cancer Therapy." ScienceDaily. ScienceDaily, 25 January 2008. <www.sciencedaily.com/releases/2008/01/080122154508.htm>.
Medical College of Georgia. (2008, January 25). Cell Division Studies Hint At Future Cancer Therapy. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/01/080122154508.htm
Medical College of Georgia. "Cell Division Studies Hint At Future Cancer Therapy." ScienceDaily. www.sciencedaily.com/releases/2008/01/080122154508.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins