Featured Research

from universities, journals, and other organizations

Ultrafast Home Network Possible By Using Separate Signals Through Optical Fibers

Date:
January 28, 2008
Source:
Netherlands Organization for Scientific Research
Summary:
Signal transmission for TV, telephone and Internet could be significantly improved with new system. The system would transmits each TV, telephone and Internet signal via a separate group of light rays through the optical fiber cable. Such a technology has not yet been marketed. Yet in the ideal situation it could be applied in a glass or polymer fiber, has the potential of being cheap, and transmits all information without disruption.

Dutch-sponsored researcher Christos Tsekrekos has investigated how a small network for at home or in a company can function optimally. His research analyses the MGDM technique (Mode Group Diversity Multiplexing) of the Eindhoven University of Technology. This technique transmits each TV, telephone and Internet signal via a separate group of light rays through the optical fibre cable. Such a technology has not yet been marketed. Yet in the ideal situation it could be applied in a glass or polymer fibre, has the potential of being cheap, and transmits all information without disruption.

Existing systems for small networks at home or in a company make use of multimode glass fibres or multimode polymer optical fibres (POF). The latter are relatively thick cables (about 1 mm thick, thus thicker than the glass fibre which is 0.125 m thick). Multimode fibre cables can conduct many light rays and can operate free of disruption and with a greater bandwidth than a wireless connection. However, due to a slight variation in the speed of the light rays through the multimode fibre, a signal transmitted by all of these rays becomes spread out. Consequently, the signals become broader and therefore fewer signals fit in the fibre, limiting the transmission capacity.

Independent channels

Tsekrekos investigated how the MGDM technique can increase the capacity of a multimode fibre network. He created independent channels by dividing the total group of light rays into groups of closely related light rays (or modes). Using special optical and electrical techniques, Tsekrekos investigated how the crosstalk between these groups could be eliminated so as to render these groups independent of each other. This step allows several groups to be used in parallel, thereby increasing the fibre's capacity. Moreover, each group can transport its own type of signal, which means that TV, telephone and Internet signals can be transmitted though the same fibre.

Using this approach the researcher constructed a simple yet stable MGDM system. The system works well up to distances of 1 km of multimode glass fibre with a core diameter of 62.5 m. Tsekrekos invented a new mode-selective spatial filter (MSSF), based on lenses with specific characteristics, to make the system reliable and to allow a large number of channels to be realised. This can result in a stable and transparent five-channel MGDM system.

Philips, Draka Fibre, TNO-ICT, and several electrical contractors are supervising this project in the Technology Foundation STW users' committee. Philips and TNO-ICT are very interested in home networks that can flexibly transport a wide range of signals. The MGDM technology together with thick multimode glass or polymer fibres will soon make it possible for consumers to simply install a universal and high capacity broadband network at home. Draka Fibre (in Eindhoven) considers the MGDM technology to be a highly promising means of obtaining even more capacity and possible applications out of this type of fibre. Further research should lead to a greater increase of the multiplex factors in more complex network structures.


Story Source:

The above story is based on materials provided by Netherlands Organization for Scientific Research. Note: Materials may be edited for content and length.


Cite This Page:

Netherlands Organization for Scientific Research. "Ultrafast Home Network Possible By Using Separate Signals Through Optical Fibers." ScienceDaily. ScienceDaily, 28 January 2008. <www.sciencedaily.com/releases/2008/01/080124093957.htm>.
Netherlands Organization for Scientific Research. (2008, January 28). Ultrafast Home Network Possible By Using Separate Signals Through Optical Fibers. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2008/01/080124093957.htm
Netherlands Organization for Scientific Research. "Ultrafast Home Network Possible By Using Separate Signals Through Optical Fibers." ScienceDaily. www.sciencedaily.com/releases/2008/01/080124093957.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins