Featured Research

from universities, journals, and other organizations

Heat Treatment Process Supplies Stronger Die Cast Parts

Date:
February 15, 2008
Source:
CSIRO Australia
Summary:
Car components with doubled mechanical strength, higher fatigue resistance and improved energy absorption are the result of a revolutionary CSIRO heat treatment process for high pressure die casting of aluminum.

A display of three test castings, which, from left to right, are: 1. As cast (left), 2. Conventional heat treatment (middle), 3. Heat treated using the new procedure (right).
Credit: Mark Fergus, CSIRO

Car components with doubled mechanical strength, higher fatigue resistance and improved energy absorption are the result of a revolutionary CSIRO heat treatment process for high pressure die casting (HPDC) of aluminium.

“Our heat treatment methods offer major improvements in tensile mechanical properties and enhancement of a range of other material properties for HPDC components,” says metallurgist Dr Roger Lumley of the Light Metals Flagship.

“Components treated with the new process do not show surface blistering or dimensional changes, they retain an as-cast appearance.”

Surprisingly, fatigue resistance of aluminium HPDC components heat-treated with the new process can be as high as for some wrought aluminium products, tending towards limiting behaviour usually observed in steel.

The new procedures may also substantially raise energy absorption during fracture, which has significant implications for crash-sensitive structural components made by high pressure die-casting.

For example, one common secondary alloy almost doubles in energy absorption, when heat treated specifically for this purpose.

“Our heat treatment methods offer major improvements in tensile mechanical properties and enhancement of a range of other material properties for HPDC components,” says metallurgist Dr Roger Lumley of the Light Metals Flagship.

“We envisage that this will make it possible to use HPDC components more widely in load carrying structural and safety applications,” Dr Lumley says.

Additionally, treated parts exhibit thermal conductivity about 20 per cent above their as-cast status, meaning that for engine or transmission applications heat can be transferred or removed more efficiently and quickly.

Potentially, since heat extraction operates more effectively, heat-treated HPDC parts could operate with lower amounts of fluid in cooling and lubrications systems.

The heat treatment process can easily be implemented in existing manufacturing facilities using conventional heat treatment equipment such as continuous belt furnaces, fluidised beds or furnace systems designed specifically for rapid heat treatment.

“It’s an attractive option because the HPDC process is more cost-effective than other manufacturing methods in mass production, and the net increase in design strength post-treatment may allow castings to be made using up to 30 per cent less metal. As a result, there is significant potential for cost reduction per part,” Dr Lumley says.

The researchers have also recently discovered a range of HPDC aluminium alloy compositions that display extraordinarily rapid strengthening behaviour, which has major cost and energy usage implications in manufacturing.”

These alloys can be heat treated to high strength levels during a total cycle time of only 30 minutes and develop properties superior to conventional aluminium casting alloys requiring heat treatment in thermal cycles of up to 24 hours.

The CSIRO-led Light Metals Flagship is now seeking partners for a published case study.

“Following our success with evaluations conducted on HPDC parts up to more than 30kg, we would like to hear from OEM or Tier 1 suppliers who would be interested in submitting a component for heat treatment, and jointly publishing the results as a case study,” Dr Lumley said.

Technical data sheets, providing test results after treatment with the new process for a range of aluminum alloys under various tempering conditions, are available at:Heat treatment of high-pressure die-castings


Story Source:

The above story is based on materials provided by CSIRO Australia. Note: Materials may be edited for content and length.


Cite This Page:

CSIRO Australia. "Heat Treatment Process Supplies Stronger Die Cast Parts." ScienceDaily. ScienceDaily, 15 February 2008. <www.sciencedaily.com/releases/2008/02/080212095458.htm>.
CSIRO Australia. (2008, February 15). Heat Treatment Process Supplies Stronger Die Cast Parts. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2008/02/080212095458.htm
CSIRO Australia. "Heat Treatment Process Supplies Stronger Die Cast Parts." ScienceDaily. www.sciencedaily.com/releases/2008/02/080212095458.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins