Featured Research

from universities, journals, and other organizations

Airbrush Useful For Making Microelectrodes, Not Just Art

Date:
February 19, 2008
Source:
University of Florida
Summary:
The airbrush, that tool behind tattoos and T-shirts, may have an unexpected future... in technology. A group of engineering students have come up with a method for using an airbrush to make microelectrodes — tiny conductors used in an increasing range of consumer, research and medical products. The technique is simpler than the standard one, at least for small projects that require production of only a few electrodes.

A microelectrode made in part with an airbrush is seen in this photo shot at a University of Florida laboratory. On a suggestion from a student who had a hobby making paper airplanes, UF engineering students came up with a way to use airbrushes to make the microelectrodes, which are used in glucose monitors for diabetics and other sensors. The airbrush technique is far cheaper and simpler than the standard one, though it works best for small, customized jobs rather than in mass production.
Credit: Image courtesy of University of Florida

The airbrush, that tool behind tattoos and T-shirts, may have an unexpected future … in technology.

A group of engineering students at the University of Florida has come up with a method for using an airbrush to make microelectrodes — tiny conductors used in an increasing range of consumer, research and medical products. The technique is simpler than the standard one, at least for small projects that require production of only a few electrodes.

“The idea was to try to find something cheap and quick, that we could do in our own lab without much expense,” said student Corey Walker.

Walker was one of four UF engineering students who worked on the project. Now a doctoral student in biomedical engineering at the University of California, Irvine, he is the lead author of a paper appearing this month in the online edition of the journal Electroanalysis.

Microelectrodes are highly sensitive, fingernail-sized devices used, for example, in off-the-shelf glucose monitors for diabetics. They are also vital to “lab on a chip” devices under development to identify substances in air, blood or other samples.

The industry standard for manufacturing microelectrodes is screen printing, a technique that, oddly, is also borrowed from the visual arts. But it requires a screen printer, and the students, who were trying to craft a hydrogen sensor, didn’t have one.

So a student who used airbrushes to build model airplanes suggested they try that tool. Trials and tests perfected the approach, with the students eventually using fully airbrushed electrodes to craft a working sensor. The technique works best for small projects because it requires each electrode to be made individually or in small batches.

“A screen-printing machine useful for fabricating microelectrodes might cost $10,000, whereas you can buy an airbrush for less than $200,” said Hugh Fan, an associate professor of mechanical and aerospace engineering who oversaw the project. “So this is a useful technique for small, custom projects.”


Story Source:

The above story is based on materials provided by University of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University of Florida. "Airbrush Useful For Making Microelectrodes, Not Just Art." ScienceDaily. ScienceDaily, 19 February 2008. <www.sciencedaily.com/releases/2008/02/080214114441.htm>.
University of Florida. (2008, February 19). Airbrush Useful For Making Microelectrodes, Not Just Art. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2008/02/080214114441.htm
University of Florida. "Airbrush Useful For Making Microelectrodes, Not Just Art." ScienceDaily. www.sciencedaily.com/releases/2008/02/080214114441.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins