Featured Research

from universities, journals, and other organizations

Why Does The World Appear Stable While Our Eyes Move?

Date:
February 18, 2008
Source:
Public Library of Science
Summary:
Whenever we shift our gaze, attention is directed to a new target. This shift in attention causes a brief compression of visual space, according to a new study. Researchers show a direct correlation between visual perception and eye movement control.

Whenever we shift our gaze, attention is directed to a new target. This shift in attention causes a brief compression of visual space, according to a new study. The team of researchers from the University of Mόnster, Germany, describes a model of brain function in which eye movement signals are used to boost the neural representation of objects located at the future eye position. This boost comes at the expense of a temporary loss of spatial accuracy. This research shows a direct correlation between visual perception and eye movement control.

Humans move their eyes 2-3 times a second without noticing. Each gaze shift triggers a host of internal brain processes with very delicate timing. The gaze shift is preceded by a brief shift of attention towards the new gaze target so that visual processing at the target area improves some 50 milliseconds before the eye itself looks at the target. This preceding improvement increases the sensitivity of visual neurons in many brain areas, which then respond more strongly to stimuli near the gaze target just prior to the gaze movement.

Using a detailed neuro-computational model of the representation of the visual world in cortical maps, the researchers investigated the consequences of these sensitivity changes to the perception of spatial location. Their results showed that objects presented just before the eye movement appear to lie at the gaze target rather than at their true spatial location, akin to a compression of visual space.

Moreover, this model explains a peculiar finding that neurons in some brain areas appear to move their receptive field, i.e. the visual direction to which they respond, prior to eye movement. Analysis of the net effect of all receptive field changes in the model shows that the brain dynamically recruits cells for processing visual information around the target. This increase in processing capacity presumably allows one to perceive details of the object before looking at it, therefore making the world appear stable while we move our eyes.

This new model prompts many predictions that can guide experimental research -- one step towards theory driven brain research. The model also paves the way to develop novel concepts for artificial vision systems.

Journal reference: Hamker FH, Zirnsak M, Calow D, Lappe M (2008) The peri-saccadic perception of objects and space. PLoS Comput Biol 4(2): e31. doi:10.1371/journal.pcbi.0040031 http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0040031


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "Why Does The World Appear Stable While Our Eyes Move?." ScienceDaily. ScienceDaily, 18 February 2008. <www.sciencedaily.com/releases/2008/02/080215103316.htm>.
Public Library of Science. (2008, February 18). Why Does The World Appear Stable While Our Eyes Move?. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2008/02/080215103316.htm
Public Library of Science. "Why Does The World Appear Stable While Our Eyes Move?." ScienceDaily. www.sciencedaily.com/releases/2008/02/080215103316.htm (accessed August 27, 2014).

Share This




More Mind & Brain News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) — A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com
Distracted Adults: ADHD?

Distracted Adults: ADHD?

Ivanhoe (Aug. 27, 2014) — Most people don’t realize that ADHD isn’t just for kids. It can affect the work as well as personal lives of many adults, and often times they don’t even know they have it. Video provided by Ivanhoe
Powered by NewsLook.com
The Sight and Sounds of Autism

The Sight and Sounds of Autism

Ivanhoe (Aug. 27, 2014) — A new study is explaining why for some people with autism what they see and what they hear is out of sync. Video provided by Ivanhoe
Powered by NewsLook.com
Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Newsy (Aug. 26, 2014) — A study published in the journal "Neurology" interviewed more than 19,000 people and found 15 percent suffer from being "sleep drunk." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins