Featured Research

from universities, journals, and other organizations

Fastest Computer: One Million Trillion 'Flops' Per Second Targeted

Date:
February 22, 2008
Source:
DOE/Sandia National Laboratories
Summary:
Preparing groundwork for an exascale computer is the mission of the new Institute for Advanced Architectures, launched jointly at Sandia and Oak Ridge national laboratories. An exaflop is a thousand times faster than a petaflop, itself a thousand times faster than a teraflop. Teraflop computers —the first was developed 10 years ago at Sandia — currently are the state of the art. They do trillions of calculations a second. Exaflop computers would perform a million trillion calculations per second.

Preparing groundwork for an exascale computer is the mission of the new Institute for Advanced Architectures, launched jointly at Sandia and Oak Ridge national laboratories.

An exaflop is a thousand times faster than a petaflop, itself a thousand times faster than a teraflop. Teraflop computers —the first was developed 10 years ago at Sandia — currently are the state of the art. They do trillions of calculations a second. Exaflop computers would perform a million trillion calculations per second.

The idea behind the institute —under consideration for a year and a half prior to its opening — is “to close critical gaps between theoretical peak performance and actual performance on current supercomputers,” says Sandia project lead Sudip Dosanjh. “We believe this can be done by developing novel and innovative computer architectures.”

Ultrafast supercomputers improve detection of real-world conditions by helping researchers more closely examine the interactions of larger numbers of particles over time periods divided into smaller segments.

“An exascale computer is essential to perform more accurate simulations that, in turn, support solutions for emerging science and engineering challenges in national defense, energy assurance, advanced materials, climate, and medicine,” says James Peery, director of computation, computers and math.

One aim, Dosanjh says, is to reduce or eliminate the growing mismatch between data movement and processing speeds.

Processing speed refers to the rapidity with which a processor can manipulate data to solve its part of a larger problem. Data movement refers to the act of getting data from a computer’s memory to its processing chip and then back again. The larger the machine, the farther away from a processor the data may be stored and the slower the movement of data.

“In an exascale computer, data might be tens of thousands of processors away from the processor that wants it,” says Sandia computer architect Doug Doerfler. “But until that processor gets its data, it has nothing useful to do. One key to scalability is to make sure all processors have something to work on at all times.”

Compounding the problem is new technology that has enabled designers to split a processor into first two, then four, and now eight cores on a single die. Some special-purpose processors have 24 or more cores on a die. Dosanjh suggests there might eventually be hundreds operating in parallel on a single chip.

“In order to continue to make progress in running scientific applications at these [very large] scales,” says Jeff Nichols, who heads the Oak Ridge branch of the institute, “we need to address our ability to maintain the balance between the hardware and the software. There are huge software and programming challenges and our goal is to do the critical R&D to close some of the gaps.”

Operating in parallel means that each core can work its part of the puzzle simultaneously with other cores on a chip, greatly increasing the speed a processor operates on data. The method does not require faster clock speeds, measured in faster gigahertz, which would generate unmanageable amounts of heat to dissipate as well as current leakage.

The new method bolsters the continued relevance of Moore’s Law, the 1965 observation of Intel cofounder Gordon Moore that the number of transistors placed on a single computer chip will double approximately every two years.

Another problem for the institute is to reduce the amount of power needed to run a future exascale computer.

“The electrical power needed with today’s technologies would be many tens of megawatts — a significant fraction of a power plant. A megawatt can cost as much as a million dollars a year,” says Dosanjh. “We want to bring that down.”

Sandia and Oak Ridge will work together on these and other problems, he says. “Although all of our efforts will be collaborative, in some areas Sandia will take the lead and Oak Ridge may lead in others, depending on who has the most expertise in a given discipline.” In addition, a key component of the institute will be the involvement of industry and universities.

A spontaneous demonstration of wide interest in faster computing was evidenced in the response to an invitation-only workshop, “Memory Opportunities for High-Performing Computing,” sponsored in January by the institute.

Workshop organizers planned for 25 participants but nearly 50 attended. Attendees represented the national labs, DOE, National Science Foundation, National Security Agency, Defense Advanced Research Projects Agency, and leading manufacturers of processors and supercomputing systems.

Ten years ago, people worldwide were astounded at the emergence of a teraflop supercomputer — that would be Sandia’s ASCI Red — able in one second to perform a trillion mathematical operations.

More recently, bloggers seem stunned that a machine capable of petaflop computing — a thousand times faster than a teraflop — could soon break the next barrier of a thousand trillion mathematical operations a second.

The institute is funded in FY08 by congressional mandate at $7.4 million. It is supported by the National Nuclear Security Administration and the Department of Energy’s Office of Science. Sandia is an NNSA laboratory.


Story Source:

The above story is based on materials provided by DOE/Sandia National Laboratories. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Sandia National Laboratories. "Fastest Computer: One Million Trillion 'Flops' Per Second Targeted." ScienceDaily. ScienceDaily, 22 February 2008. <www.sciencedaily.com/releases/2008/02/080221162405.htm>.
DOE/Sandia National Laboratories. (2008, February 22). Fastest Computer: One Million Trillion 'Flops' Per Second Targeted. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2008/02/080221162405.htm
DOE/Sandia National Laboratories. "Fastest Computer: One Million Trillion 'Flops' Per Second Targeted." ScienceDaily. www.sciencedaily.com/releases/2008/02/080221162405.htm (accessed April 23, 2014).

Share This



More Computers & Math News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

High Court to Hear Dispute of TV Over Internet

High Court to Hear Dispute of TV Over Internet

AP (Apr. 22, 2014) The future of Aereo, an online service that provides over-the-air TV channels, hinges on a battle with broadcasters that goes before the U.S. Supreme Court on Tuesday. (April 22) Video provided by AP
Powered by NewsLook.com
Aereo Takes on Broadcast TV Titans in Supreme Court Today

Aereo Takes on Broadcast TV Titans in Supreme Court Today

TheStreet (Apr. 22, 2014) Aereo heads to the Supreme Court today to fight for its right to stream broadcast TV over the Internet -- against broadcasters who say the start-up infringes upon copyright law. TheStreet Deputy Managing Editor Leon Lazaroff explains the importance of the case in the TV industry and details what the outcome of it could mean for broadcasters and for cloud storage services -- as Aereo allows its subscribers to not just watch live TV shows but also store content to a DVR in the cloud. Video provided by TheStreet
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
Netflix To Raise Prices For New Subscribers

Netflix To Raise Prices For New Subscribers

Newsy (Apr. 21, 2014) Netflix executives say they don't think a $1 or $2 price hike will hurt the service, and they have their sites set on overtaking HBO. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins