Featured Research

from universities, journals, and other organizations

Protein Shines Light On Cancer Response

Date:
February 26, 2008
Source:
Vanderbilt University Medical Center
Summary:
A technique that specifically "tags" tumors responding to chemotherapy may offer a new strategy for determining a cancer treatment's effectiveness within days of starting treatment, according to a new study by Vanderbilt-Ingram Cancer Center investigators.

A technique that specifically "tags" tumors responding to chemotherapy may offer a new strategy for determining a cancer treatment's effectiveness within days of starting treatment, according to a new study by Vanderbilt-Ingram Cancer Center investigators.

Appearing online ahead of print in Nature Medicine, the researchers report the identification of a small protein that specifically recognizes tumors responding to chemotherapy. They show that the protein, when tagged with a light-emitting molecule, can be used to visualize cancer response in mice just two days after starting therapy.

Improved monitoring of tumor response could help customize patient treatment and also speed up the development of new cancer drugs, said senior investigator Dennis Hallahan, M.D., the Ingram Professor of Cancer Research and chair of Radiation Oncology at Vanderbilt University Medical Center.

Currently, response to chemotherapy is determined by measuring changes in tumor size with imaging techniques like CT (computed tomography) and MRI (magnetic resonance imaging).

"It takes two to three months of cancer therapy before we can determine whether the therapy has been effective for a patient," he said. "If we can get that answer within one to two days, we can switch that patient to an alternative regimen very quickly."

Rapid assessment of tumor response is especially important now, Hallahan says, given recent advances in molecular targeted therapies -- chemotherapy medications that specifically interfere with the growth and proliferation of cancer cells while avoiding damage to healthy cells.

"We now have so many molecular targeted drugs to choose from, and that number is growing every year, so we are now at a point where a patient can be switched from one regimen to another," he said. "But we need the tools to make the decision to use an alternative therapy with the patient."

To find a rapid and noninvasive method to assess cancer response to these therapies, Hallahan focused not on tumor size, but molecular and cellular changes in responding tumors.

From a panel of billions of protein fragments, or peptides, Hallahan and colleagues identified one that specifically bound to tumors responding to therapy. To this peptide, they attached a light-emitting molecule and injected these labeled peptides into mice that had been implanted with human tumors.

Using specialized imaging cameras that detect light in the near-infrared range (invisible to the human eye), the investigators saw that tumors responding to therapy were "brighter" than non-responding tumors. The peptide detected response in a wide range of tumors -- brain, lung, colon, prostate and breast -- within two days of initiation of treatment.

"The key word here is 'days,'" Hallahan said. "This will allow us to minimize the duration of treatments with ineffective regimens in cancer patients."

The next step will be to move the technology into humans. The imaging technique used in mice (near-infrared) is not sensitive enough to penetrate deeply into human tissues, so the researchers are adapting the technology to an imaging modality commonly used in humans, called PET (positron emission tomography).

"This imaging peptide will enter clinical trials within about 18 months," Hallahan said. "The purpose, when we bring it into people, is to ask a very simple question: can we image responding cancers in people as well as we can in mice?"

If so, he says that he suspects that such molecular imaging methods could help accelerate the development of new chemotherapeutic drugs.

"In the pharmaceutical industry, we'll have a patient on a drug for months before we can re-evaluate the size of the tumor," Hallahan said. "If we can get that answer within a couple of days, it will speed cancer drug development in the early phases of clinical trials."

Vanderbilt co-authors on the study were: Zhaozhong Han, Ph.D., Allie Fu, Hailun Wang, Roberto Diaz, M.D., Ph.D., Ling Geng, M.D., and Halina Onishko. The research was supported by the National Cancer Institute, the Ingram Charitable Fund and the Vanderbilt-Ingram Cancer Center.


Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University Medical Center. "Protein Shines Light On Cancer Response." ScienceDaily. ScienceDaily, 26 February 2008. <www.sciencedaily.com/releases/2008/02/080224134753.htm>.
Vanderbilt University Medical Center. (2008, February 26). Protein Shines Light On Cancer Response. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2008/02/080224134753.htm
Vanderbilt University Medical Center. "Protein Shines Light On Cancer Response." ScienceDaily. www.sciencedaily.com/releases/2008/02/080224134753.htm (accessed August 1, 2014).

Share This




More Health & Medicine News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Quintuplets Head Home

Texas Quintuplets Head Home

Reuters - US Online Video (Aug. 1, 2014) After four months in the hospital, the first quintuplets to be born at Baylor University Medical Center head home. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Patient Coming to U.S. for Treatment

Ebola Patient Coming to U.S. for Treatment

Reuters - US Online Video (Aug. 1, 2014) A U.S. aid worker infected with Ebola while working in West Africa will be treated in a high security ward at Emory University in Atlanta. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins