Featured Research

from universities, journals, and other organizations

New Drug Targets For Preventing Cell Death Discovered

Date:
February 29, 2008
Source:
University of California - Davis
Summary:
A new compound that blocks an early step in cell death could lead to a novel class of drugs for treating heart attacks and stroke. The researchers screened 23,000 compounds to find those that blocked mitochondrial division in yeast cells. From three "hits" they picked the one that was most effective.

A new compound that blocks an early step in cell death could lead to a novel class of drugs for treating heart attacks and stroke.

When cells are deprived of oxygen -- during a heart attack, for example -- they start to die through a tidy process called apoptosis or programmed cell death. Early in apoptosis, the mitochondria -- complex structures that supply energy to the cell -- divide into pieces, holes appear in their membranes and proteins such as cytochrome c leak out. These events trigger other processes, ending in cell death.

"Mitochondria divide like crazy during apoptosis," said Jodi Nunnari, professor of molecular and cellular biology at UC Davis and senior author on the paper.* Nunnari's lab has been studying the fundamental processes of mitochondrial division for several years.

The researchers screened 23,000 compounds to find those that blocked mitochondrial division in yeast cells. From three "hits" they picked the most effective, named mdivi-1.

They found that mdivi-1 blocks mitochondrial division dynamin, one of a class of proteins found in both yeast and mammals that can assemble itself into a spiral garrotte around the mitochondrion and cut it in two. Mdivi-1 interfered with the self-assembly of dynamin in both yeast and mammalian cells.

Mdivi-1 also blocked the process that punches holes in the mitochondrial membrane, preventing leakage of cytochrome c. The researchers found that this process could also be traced back to the effect of mdivi-1 on dynamin.

Dynamins could be a target for drugs that prevent cells from dying -- during strokes, for example, or during heart attacks or in diseases where nerve cells progressively deteriorate and die, Nunnari said. She also noted that the work would not have been possible without having first gained a fundamental understanding of how mitochondrial division works.

*The paper is published in the Feb. 11 issue of the journal Developmental Cell and was supported by grants from the NIH. The other authors on the paper are: Ann Cassidy-Stone, a postdoctoral researcher at UC Davis and first author on the paper; Jerry Chipuk and Douglas Green at St. Jude Children's Research Hospital in Memphis, Tenn.; Cheng Song, graduate student at UC Davis and former graduate student Elena Ingerman; postdoctoral researcher Choong Yoo, Professor Mark Kurth and Assistant Professor Jared Shaw, all at the UC Davis chemistry department; Tomomi Kuwana, University of Iowa; and Jenny Hinshaw, National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Davis. "New Drug Targets For Preventing Cell Death Discovered." ScienceDaily. ScienceDaily, 29 February 2008. <www.sciencedaily.com/releases/2008/02/080228093230.htm>.
University of California - Davis. (2008, February 29). New Drug Targets For Preventing Cell Death Discovered. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2008/02/080228093230.htm
University of California - Davis. "New Drug Targets For Preventing Cell Death Discovered." ScienceDaily. www.sciencedaily.com/releases/2008/02/080228093230.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins