Featured Research

from universities, journals, and other organizations

A Chemical 'Keypad Lock' For Biomolecular Computers

Date:
March 25, 2008
Source:
American Chemical Society
Summary:
Researchers are reporting an advance toward a new generation of ultra-powerful computers built from DNA and enzymes, rather than transistors, silicon chips, and plastic. They describe development of a chemical "keypad lock," one of the first chemical-based security systems of its kind.

Researchers in New York are reporting an advance toward a new generation of ultra-powerful computers built from DNA and enzymes, rather than transistors, silicon chips, and plastic. A new report on the development of a key component for these "biomolecular computers" has just been published.

Related Articles


Evgeny Katz and colleagues describe development of a chemical "keypad lock," one of the first chemical-based security systems of its kind. The researchers note that years of effort have gone into developing biomolecular computers, which rely on chemical reactions rather than silicon chips to perform logic functions. Among their uses would be encryption of financial, military, and other confidential information. Only individuals with access to a secret "key" -- a chemical key -- could unlock the file and access the data.

The research by Katz and colleagues solved one part of this technological challenge: The security code. They identified a series of naturally occurring chemical reactions that act as a "keypad lock." In laboratory studies, they demonstrated that by adding the correct series of chemicals, the lock could be opened to access the computer. On the other hand, adding the incorrect chemicals to the system acts as a wrong password and prevents access to the computer, they say.

"In addition to the biomolecular security applications, the enzyme-based implication logic networks will be extremely important for making autonomous decisions on the use of specific tools/drugs in various implantable medical systems."

Journal reference: The article "Biocomputing Security System: Concatenated Enzyme-Based Logic Gates Operating as a Biomolecular Keypad Lock" is scheduled for the March 26 issue of ACS' Journal of the American Chemical Society. (http://dx.doi.org/10.1021/ja7114713)


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "A Chemical 'Keypad Lock' For Biomolecular Computers." ScienceDaily. ScienceDaily, 25 March 2008. <www.sciencedaily.com/releases/2008/03/080324102640.htm>.
American Chemical Society. (2008, March 25). A Chemical 'Keypad Lock' For Biomolecular Computers. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2008/03/080324102640.htm
American Chemical Society. "A Chemical 'Keypad Lock' For Biomolecular Computers." ScienceDaily. www.sciencedaily.com/releases/2008/03/080324102640.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Recharge Your Phone in 30 Seconds? Israeli Firm Says It Can

Recharge Your Phone in 30 Seconds? Israeli Firm Says It Can

Reuters - Innovations Video Online (Nov. 28, 2014) With consumers demanding more and more from their mobile devices, scientists in Israel and Singapore are developing super fast-charging batteries to power them. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
EU Pushes Google For Worldwide Right To Be Forgotten

EU Pushes Google For Worldwide Right To Be Forgotten

Newsy (Nov. 27, 2014) Privacy regulators recommend Google expand its requested removals to apply to all its web domains. Video provided by Newsy
Powered by NewsLook.com
Predictions Of Tablets' Demise Sound Familiar

Predictions Of Tablets' Demise Sound Familiar

Newsy (Nov. 26, 2014) The tablet's days are numbered, at least according to a recent IDC report. The market-research firm paints a grim outlook for tablets. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins