Featured Research

from universities, journals, and other organizations

A Chemical 'Keypad Lock' For Biomolecular Computers

Date:
March 25, 2008
Source:
American Chemical Society
Summary:
Researchers are reporting an advance toward a new generation of ultra-powerful computers built from DNA and enzymes, rather than transistors, silicon chips, and plastic. They describe development of a chemical "keypad lock," one of the first chemical-based security systems of its kind.

Researchers in New York are reporting an advance toward a new generation of ultra-powerful computers built from DNA and enzymes, rather than transistors, silicon chips, and plastic. A new report on the development of a key component for these "biomolecular computers" has just been published.

Related Articles


Evgeny Katz and colleagues describe development of a chemical "keypad lock," one of the first chemical-based security systems of its kind. The researchers note that years of effort have gone into developing biomolecular computers, which rely on chemical reactions rather than silicon chips to perform logic functions. Among their uses would be encryption of financial, military, and other confidential information. Only individuals with access to a secret "key" -- a chemical key -- could unlock the file and access the data.

The research by Katz and colleagues solved one part of this technological challenge: The security code. They identified a series of naturally occurring chemical reactions that act as a "keypad lock." In laboratory studies, they demonstrated that by adding the correct series of chemicals, the lock could be opened to access the computer. On the other hand, adding the incorrect chemicals to the system acts as a wrong password and prevents access to the computer, they say.

"In addition to the biomolecular security applications, the enzyme-based implication logic networks will be extremely important for making autonomous decisions on the use of specific tools/drugs in various implantable medical systems."

Journal reference: The article "Biocomputing Security System: Concatenated Enzyme-Based Logic Gates Operating as a Biomolecular Keypad Lock" is scheduled for the March 26 issue of ACS' Journal of the American Chemical Society. (http://dx.doi.org/10.1021/ja7114713)


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "A Chemical 'Keypad Lock' For Biomolecular Computers." ScienceDaily. ScienceDaily, 25 March 2008. <www.sciencedaily.com/releases/2008/03/080324102640.htm>.
American Chemical Society. (2008, March 25). A Chemical 'Keypad Lock' For Biomolecular Computers. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2008/03/080324102640.htm
American Chemical Society. "A Chemical 'Keypad Lock' For Biomolecular Computers." ScienceDaily. www.sciencedaily.com/releases/2008/03/080324102640.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Smart Bracelet Changes Design With the Touch of a Button

Smart Bracelet Changes Design With the Touch of a Button

Reuters - Innovations Video Online (Mar. 27, 2015) Interactive jewellery that allows users to change designs and doesn&apos;t need charging. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Twitter's Periscope New Rival for Meerkat

Twitter's Periscope New Rival for Meerkat

Reuters - Business Video Online (Mar. 26, 2015) Twitter has unveiled Periscope, its live-streaming app to rival Meerkat and other emerging apps that have captured the attention of the social media industry. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins