Featured Research

from universities, journals, and other organizations

Music File Compressed 1,000 Times Smaller Than Mp3

Date:
April 2, 2008
Source:
University of Rochester
Summary:
Researchers have digitally reproduced music in a file nearly 1,000 times smaller than a regular mp3 file. The music, a 20-second clarinet solo, is encoded in less than a single kilobyte, and is made possible by two innovations: recreating in a computer both the real-world physics of a clarinet and the physics of a clarinet player.

Researchers at the University of Rochester have digitally reproduced music in a file nearly 1,000 times smaller than a regular MP3 file. The music, a 20-second clarinet solo, is encoded in less than a single kilobyte, and is made possible by two innovations: recreating in a computer both the real-world physics of a clarinet and the physics of a clarinet player.

The achievement, announced April 1 at the International Conference on Acoustics Speech and Signal Processing held in Las Vegas, is not yet a flawless reproduction of an original performance, but the researchers say it's getting close.

"This is essentially a human-scale system of reproducing music," says Mark Bocko, professor of electrical and computer engineering and co-creator of the technology. "Humans can manipulate their tongue, breath, and fingers only so fast, so in theory we shouldn't really have to measure the music many thousands of times a second like we do on a CD. As a result, I think we may have found the absolute least amount of data needed to reproduce a piece of music."

In replaying the music, a computer literally reproduces the original performance based on everything it knows about clarinets and clarinet playing. Two of Bocko's doctoral students, Xiaoxiao Dong and Mark Sterling, worked with Bocko to measure every aspect of a clarinet that affects its sound—from the backpressure in the mouthpiece for every different fingering, to the way sound radiates from the instrument. They then built a computer model of the clarinet, and the result is a virtual instrument built entirely from the real-world acoustical measurements.

The team then set about creating a virtual player for the virtual clarinet. They modeled how a clarinet player interacts with the instrument including the fingerings, the force of breath, and the pressure of the player's lips to determine how they would affect the response of the virtual clarinet. Then, says Bocko, it's a matter of letting the computer "listen" to a real clarinet performance to infer and record the various actions required to create a specific sound. The original sound is then reproduced by feeding the record of the player's actions back into the computer model.

At present the results are a very close, though not yet a perfect, representation of the original sound.

"We are still working on including 'tonguing,' or how the player strikes the reed with the tongue to start notes in staccato passages," says Bocko. "But in music with more sustained and connected notes the method works quite well and it's difficult to tell the synthesized sound from the original."

As the method is refined the researchers imagine that it may give computer musicians more intuitive ways to create expressive music by including the actions of a virtual musician in computer synthesizers. And although the human vocal tract is highly complex, Bocko says the method may in principle be extended to vocals as well.

The current method handles only a single instrument at a time, however in other work in the University's Music Research Lab with post-doctoral researcher Gordana Velikic and Dave Headlam, professor of music theory at the University of Rochester's Eastman School of Music, the team has produced a method of separating multiple instruments in a mix so the two methods can be combined to produce a very compact recording.

Bocko believes that the quality will continue to improve as the acoustic measurements and the resulting synthesis algorithms become more accurate, and he says this process may represent the maximum possible data compression of music.

"Maybe the future of music recording lies in reproducing performers and not recording them," says Bocko.

This research is funded by the National Science Foundation.

Sound files

Human performance recorded using MP3 format http://www.rochester.edu/news/audio/sound2_160mp3.wav

Virtual performance using Bocko's new compression http://www.rochester.edu/news/audio/sound4.wav


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University of Rochester. "Music File Compressed 1,000 Times Smaller Than Mp3." ScienceDaily. ScienceDaily, 2 April 2008. <www.sciencedaily.com/releases/2008/04/080401150755.htm>.
University of Rochester. (2008, April 2). Music File Compressed 1,000 Times Smaller Than Mp3. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2008/04/080401150755.htm
University of Rochester. "Music File Compressed 1,000 Times Smaller Than Mp3." ScienceDaily. www.sciencedaily.com/releases/2008/04/080401150755.htm (accessed August 28, 2014).

Share This




More Matter & Energy News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins