Featured Research

from universities, journals, and other organizations

Creating Quantum Computers Using Entangled Photons In Optical Fibers Getting Closer

April 9, 2008
Northwestern University
Computer scientists are one step closer to realizing distributed quantum computing. They recently demonstrated one of the basic building blocks for distributed quantum computing using entangled photons generated in optical fibers.

For now, full-fledged quantum computers are the stuff of science fiction — in last summer's blockbuster movie Transformers, the bad guys use quantum computing to break into the U.S. Army's secure files in just 10 seconds flat.

Related Articles

But Prem Kumar, the AT&T Professor of Information Technology in the Department of Electrical Engineering and Computer Science and the director of the Center for Photonic Communication and Computing, and his research group are one step closer to realizing that technology — though for far better purposes. The group recently demonstrated one of the basic building blocks for distributed quantum computing using entangled photons generated in optical fibers.

"Because it is done with fiber and the technology that is already globally deployed, we think that it is a significant step in harnessing the power of quantum computers," Kumar says.

Quantum computing differs from classical computing in that a classical computer works by processing “bits” that exist in two states, either one or zero. Quantum computing uses quantum bits, or qubits, which, in addition to being one or zero can also be in a "superposition," which is both one and zero simultaneously. This is possible because qubits are quantum units like atoms, ions, or photons that operate under the rules of quantum mechanics instead of classical mechanics.

The "superposition" state allows a quantum computer to process significantly more information than a classical computer and in a much shorter time.

The area of quantum computing took off about 14 years ago after mathematician/physicist Peter Shor created a quantum algorithm that could factor large integers much more efficiently than a classical computer. Such an algorithm put the computer world in a tizzy because many web sites secure information like credit card and bank account numbers over the Internet through the public-key cryptography method known as RSA, after its inventors Rivest, Shamir, and Adleman. This method is based on the assumption that it is computationally infeasible to factor very large integers on classical computers.

Though researchers are still many years away from creating a quantum computer capable of running the Shor algorithm, progress has been made. Kumar’s group, which uses photons as qubits, found that they can entangle two indistinguishable photons together in an optical fiber very efficiently by using the fiber’s inherent nonlinear response. They also found that no matter how far you separate the two photons in standard transmission fibers they remain entangled and are "mysteriously" connected to each other’s quantum state.

For this paper, Kumar and his team used the fiber-generated indistinguishable photons to implement the most basic quantum computer task – a controlled-NOT gate, which allows two photonic qubits to interact.

"This device that we demonstrated in the lab is a two-qubit device — nowhere near what’s needed for a quantum computer — so what can you do with it?" Kumar says. "It’s nice to demonstrate something useful to give a boost to the field, and there are some problems at hand that can be solved right now using what we have."

The Defense Advanced Research Projects Agency has funded the group’s next effort to study how to implement a quantum network for physically demonstrating efficient public goods strategies, which are similar to the mechanism design theory that Nobel laureate Roger Myerson laid the foundation for while at Northwestern.

Kumar says such a network could help out with high stakes auctions, like if, for example, the Department of Defense wanted to build an expensive airplane and sends out a request for bids. No one company can build the entire airplane, and there could be 15 companies that can build some part of the airplane, whether it’s a navigation system or an engine.

But instead of just giving the project to the lowest bidder, the government could save public dollars by allowing these companies to bid in a complicated way that makes the process more efficient. Maybe the engine company has worked with the fuselage company before and, if they worked together again, could be more efficient and less expensive than another two companies working together. They could then send in a conditional set of bids, along with regular bids if the two companies were to work with other companies as well.

"Figuring out the best possible outcome is possible with quantum computers," Kumar says. "Based on these fiber-type gates that we are building utilizing entanglement, the auctioneer has an efficient way of determining optimal outcomes when bidders make conditional bids. When the computation is done, it reveals only the winning strategy, and all other bids disappear."

Kumar says they hope to perform this experiment sometime in the next year.

The article, Demonstration of a Quantum Controlled-NOT Gate in the Telecommunications Band, was published in Physical Review Letters April 4, 2008.

In addition to Kumar, authors include Jun Chen, Joseph Altepeter, Milja Medic, Kim Fook Lee, Burc Gokden, all of Northwestern. Robert Hadfield and Sae Woo Nam of the National Institute of Standard and Technology were also authors.

Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.

Cite This Page:

Northwestern University. "Creating Quantum Computers Using Entangled Photons In Optical Fibers Getting Closer." ScienceDaily. ScienceDaily, 9 April 2008. <www.sciencedaily.com/releases/2008/04/080408144820.htm>.
Northwestern University. (2008, April 9). Creating Quantum Computers Using Entangled Photons In Optical Fibers Getting Closer. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2008/04/080408144820.htm
Northwestern University. "Creating Quantum Computers Using Entangled Photons In Optical Fibers Getting Closer." ScienceDaily. www.sciencedaily.com/releases/2008/04/080408144820.htm (accessed January 28, 2015).

Share This

More From ScienceDaily

More Computers & Math News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

PlayStation Now Smart TV App

PlayStation Now Smart TV App

Rumble (Jan. 27, 2015) PlayStation Now Smart TV app is coming soon and will be available on both Sony and Samsung HDTV, allowing you to play games without even a counsel! Check out the video for more info. Credit to &apos;booredatwork&apos;. Video provided by Rumble
Powered by NewsLook.com
WikiLeaks Accuses Google of Handing Over Emails to US

WikiLeaks Accuses Google of Handing Over Emails to US

AFP (Jan. 27, 2015) Whistleblowing site WikiLeaks accused Google of handing over the emails and electronic data of its senior staff to the US authorities without providing notification until almost three years later. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com
Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins