Featured Research

from universities, journals, and other organizations

How Rocket Engines Can Be Destroyed By Mysterious Sound Waves

Date:
April 10, 2008
Source:
Georgia Institute of Technology
Summary:
Researchers have discovered why rocket engines are occasionally destroyed by mysterious waves of sound. The new imaging techniques allow scientists to observe and understand the destructive waves.

An image of destructive acoustic waves building inside a small, simulated rocket combustor.
Credit: Image courtesy of Georgia Institute of Technology

There’s a strange wave phenomenon that’s plagued rocket scientists for years, a lurking threat with the power to destroy an engine at almost any time. For decades, scientists have had a limited understanding of how or why it happens because they could not replicate or investigate the problem under controlled laboratory conditions.

Scientists generally believe that these powerful and unstable sound waves, created by energy supplied by the combustion process, were the cause of rocket failures in several U.S. and Russian rockets. Scientists have also observed these mysterious oscillations in other propulsion and power-generating systems such as missiles and gas turbines.

Now, researchers at the Georgia Institute of Technology have developed a liquid rocket engine simulator and imaging techniques that can help demystify the cause of these explosive sound waves and bring scientists a little closer to being able to understand and prevent them. The Georgia Tech research team was able to clearly demonstrate that the phenomenon manifests itself in the form of spinning acoustic waves that gain destructive power as they rotate around the rocket’s combustion chamber.

“This is a very troublesome phenomenon in rockets,” said Ben Zinn, the David S. Lewis Jr. Chair and Regents’ Professor in the Guggenheim School of Aerospace Engineering at Georgia Tech. “These spinning acoustic oscillations destroy engines without anyone fully understanding how these waves are formed. Visualizing this phenomenon brings us a step closer to understanding it.”

During past investigations into this damaging instability, scientists were able to observe initial stages of the problem but were forced to shut down engines before the waves could fully develop and cause serious damage to the engine. Researchers were also hindered by their inability to clearly observe the complex processes inside the investigated rocket engines.

But with a great deal of help from Dr. Oleksandr Bibik, a visiting physicist and research scientist from Ukraine, the Georgia Tech research team developed an experimental setup and imaging technique that provides detailed information on how these waves form and behave — without blowing up an engine or endangering lives.

First, the researchers developed a low-pressure combustor that serves as a true simulator of larger rocket engines. Bibik then used a very-high-speed camera in combination with series of fiber optic probes that together allowed researchers to clearly observe the formation and behavior of excited spinning sound waves within the engine. Additionally, Bibik’s new imaging method enabled researchers to determine the conditions under which these waves are excited and how they can be controlled.

Bibik’s method uses a high-speed camera to view the reaction zone via a system of filters that allow only specific light radiation generated in the combustion zone to reach the camera’s lens. This strategy eliminates all background light interference and provides clear images of combustion (and sound) waves spinning around the engine’s periphery. Simultaneously, strategically placed fiber optic probes collect information on the reaction process oscillations in various locations in the combustor.

Using these new techniques, the research team discovered that the destructive waves gained energy as they spun around the engine’s periphery at a rate of 5,000 revolutions per second.

The capability to simulate and observe these destructive oscillations in a controlled laboratory environment could help researchers develop techniques to prevent their occurrence in real engines.

“Better understanding this phenomenon could very likely lead to safer tactical and space missions and save billions of dollars for technologies that use combustors,” Zinn said.

The research was presented at the 2008 American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting in Reno, Nevada, and funded by the Air Force Office of Scientific Research.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "How Rocket Engines Can Be Destroyed By Mysterious Sound Waves." ScienceDaily. ScienceDaily, 10 April 2008. <www.sciencedaily.com/releases/2008/04/080409150058.htm>.
Georgia Institute of Technology. (2008, April 10). How Rocket Engines Can Be Destroyed By Mysterious Sound Waves. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2008/04/080409150058.htm
Georgia Institute of Technology. "How Rocket Engines Can Be Destroyed By Mysterious Sound Waves." ScienceDaily. www.sciencedaily.com/releases/2008/04/080409150058.htm (accessed August 23, 2014).

Share This




More Matter & Energy News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) — UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) — China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) — Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins