Featured Research

from universities, journals, and other organizations

What Happens When You Pop A Quantum Balloon?

Date:
April 20, 2008
Source:
University of Southern California
Summary:
When a tiny, quantum-scale, hypothetical balloon is popped in a vacuum, do the particles inside spread out all over the place as predicted by classical mechanics? A Nature paper answers the question, which is deceptively complex and bears on quantum computing and information theory.

When a tiny, quantum-scale, hypothetical balloon is popped in a vacuum, do the particles inside spread out all over the place as predicted by classical mechanics"

Related Articles


The question is deceptively complex, since quantum particles do not look or act like air molecules in a real balloon. Matter at the infinitesimally small quantum scale is both a wave and a particle, and its location cannot be fixed precisely because measurement alters the system.

Now, theoretical physicists at the University of Southern California and the University of Massachusetts Boston have proven a long-standing hypothesis that quantum-scale chaos exists ... sort of.

Writing in the April 17 edition of Nature, senior author Maxim Olshanii reported that when an observer attempts to measure the energies of particles coming out of a quantum balloon, the interference caused by the attempt throws the system into a final, "relaxed" state analogous to the chaotic scattering of air molecules.

The result is the same for any starting arrangement of particles, Olshanii added, since the act of measuring wipes out the differences between varying initial states.

"It's enough to know the properties of a single stationary state of definite energy of the system to predict the properties of the thermal equilibrium (the end state)," Olshanii said.

The measurement -- which must involve interaction between observer and observed, such as light traveling between the two -- disrupts the "coherent" state of the system, Olshanii said.

In mathematical terms, the resulting interference reveals the final state, which had been hidden in the equations describing the initial state of the system.

"The thermal equilibrium is already encoded in an initial state," Olshanii said. "You can see some signatures for the future equilibrium. They were already there but more masked by quantum coherences."

The finding holds implications for the emerging fields of quantum computing and quantum information theory, said Paolo Zanardi, an associate professor of physics studying quantum information at USC.

In Zanardi's world, researchers want to prevent coherent systems from falling into the chaos of thermal equilibrium.

"Finding such 'unthermalizable' states of matter and manipulating them is exactly one of those things that quantum information/computation folks like me would love to do," Zanardi wrote. "Such states would be immune from 'decoherence' (loss of quantum coherence induced by the coupling with environment) that's still the most serious, both conceptually and practically, obstacle between us and viable quantum information processing."

Zanardi and a collaborator introduced the notion of "decoherence-free" quantum states in 1997. Researchers such as Zanardi and Daniel Lidar, associate professor of chemistry, among others, have helped make USC a major center for the study of quantum computing.

Olshanii and his co-authors, postdoctoral researchers Marcos Rigol and Vanja Dunjko, developed their theory of quantum thermal equilibrium at USC and completed their work at the University of Massachusetts Boston.

Their research was funded by the National Science Foundation and the Office of Naval Resarch.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Cite This Page:

University of Southern California. "What Happens When You Pop A Quantum Balloon?." ScienceDaily. ScienceDaily, 20 April 2008. <www.sciencedaily.com/releases/2008/04/080417155913.htm>.
University of Southern California. (2008, April 20). What Happens When You Pop A Quantum Balloon?. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2008/04/080417155913.htm
University of Southern California. "What Happens When You Pop A Quantum Balloon?." ScienceDaily. www.sciencedaily.com/releases/2008/04/080417155913.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Star Wars Inspires Mobile Holograms

Star Wars Inspires Mobile Holograms

Reuters - Business Video Online (Mar. 6, 2015) 3D holograms could soon be coming to your mobile phone. Inspired by the famous Princess Leia hologram from Star Wars, a U.S. company is showcasing a prototype display at the Mobile World Congress at Barcelona and says it could be used for real-time video calls. Ivor Bennett reports Video provided by Reuters
Powered by NewsLook.com
Game Makers Lured Into Virtual Worlds

Game Makers Lured Into Virtual Worlds

AFP (Mar. 6, 2015) Some 25,000 people have descended upon San Francisco to show off the latest technologies and video games at the Game Developers Conference. Developers here discuss the future of the industry. Duration: 02:20. Video provided by AFP
Powered by NewsLook.com
Star Wars-Inspired Prototype Creates Holographic Display

Star Wars-Inspired Prototype Creates Holographic Display

Reuters - Innovations Video Online (Mar. 5, 2015) A prototype holographic display named Leia - after the Star Wars princess who appeared in holographic form asking Obi-Wan Kenobu for help - is demonstrated at the Mobile World Congress in Barcelona. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
IKEA and Samsung Launch Embedded Wireless Charging Range

IKEA and Samsung Launch Embedded Wireless Charging Range

Reuters - Innovations Video Online (Mar. 5, 2015) Samsung and IKEA hope their new embedded wireless charging products, launched at Barcelona&apos;s Mobile World Congress, will tempt consumers eager for plugless power. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins