Featured Research

from universities, journals, and other organizations

Life-Probing Instrument Preparing For Mission To Mars

Date:
April 30, 2008
Source:
University of California, San Diego
Summary:
A new life-detecting instrument is preparing for a mission to the Red Planet. The Urey: Mars Organic and Oxidant Detector instrument, developed by a scientist at Scripps Institution of Oceanography at UC San Diego, received approximately $2 million in NASA funding to further refine the design and technology for the European Space Agency's (ESA) 2013 ExoMars Rover Mission.

Artist's concept of ExoMars rover planned for launch in 2013.
Credit: European Space Agency

A new life-detecting instrument is preparing for a mission to the Red Planet. The Urey: Mars Organic and Oxidant Detector instrument, developed by a scientist at Scripps Institution of Oceanography at UC San Diego, received approximately $2 million in NASA funding to further refine the design and technology for the European Space Agency's (ESA) 2013 ExoMars Rover Mission.

Named after the late Nobel Laureate and UC San Diego scholar Harold C. Urey, the Urey instrument will perform the first search for key classes of organic molecules in the Martian environment using state-of-the-art analytical methods at part-per-million sensitivities. This highly sensitive instrument is the first with the capability to effectively discriminate between Martian materials produced by biological and non-biological processes. In addition, the investigation will provide definitive oxidation characteristics of those same samples.

Jeffrey Bada of Scripps Oceanography, along with a multinational research team including colleagues Frank Grunthaner of the NASA Jet Propulsion Laboratory, Richard Mathies of UC Berkeley, Aaron Zent of the NASA Ames Research Center, Richard Quinn of the SETI Institute, Pascale Ehrenfreund of the NASA Goddard Spaceflight Center and Mark Sephton of Imperial College, London have designed an investigation using the Urey instrument to look for signs of past or present life on Mars. It will analyze Martian rock and soil samples provided by the ESA-developed ExoMars Rover, for organic molecules and amino acids, the building blocks of life. Urey will be built and tested at the NASA Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

“This next phase of funding assures that the Urey instrument’s design will be completed on schedule and we will be prepared to start building the actual instrument next year,” said Bada, professor of marine chemistry at Scripps and principal investigator of the Urey investigation.

The instrument has been supported by NASA Research and Development funding for the past several years leading up to this transition to Phase A Flight planning and design.

The Urey instrument has been identified as an integral component of ExoMars, a six-month mission on the Red Planet and ESA’s first rover mission to Mars. “We will be working very closely with our European partners over the next year to finalize interfaces and to further solidify how Urey fits into the overall ExoMars payload system,” said Allen Farrington, project manager of the Urey development team at JPL.

A compact instrument that can be held in the palm of one’s hand, Urey will search for trace levels of amine-containing organic molecules by “making espresso” from spoon-sized amounts of Martian soil, freeze drying the liquid to remove the water, and then slowly re-heating the residue, and concentrating the organic molecules by condensing them on a cold trap. A lab-on-a-chip, micro-fluidic, laser-induced fluorescence detector initially developed by team members at UC Berkeley will probe the trap’s contents.

In addition to the organic compound analyses, Urey will also test the Martian samples and environment for their ability to degrade organic compounds through oxidation. The Mars Oxidant Instrument developed by team members at NASA Ames Research Center, JPL and the SETI Institute will enable the scientists to evaluate the stability of compounds directly under Martian conditions. Even if no organic compounds are detected, this oxidation information will provide important data for understanding the reasons why organic compounds might not be preserved on Mars.


Story Source:

The above story is based on materials provided by University of California, San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California, San Diego. "Life-Probing Instrument Preparing For Mission To Mars." ScienceDaily. ScienceDaily, 30 April 2008. <www.sciencedaily.com/releases/2008/04/080428203702.htm>.
University of California, San Diego. (2008, April 30). Life-Probing Instrument Preparing For Mission To Mars. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2008/04/080428203702.htm
University of California, San Diego. "Life-Probing Instrument Preparing For Mission To Mars." ScienceDaily. www.sciencedaily.com/releases/2008/04/080428203702.htm (accessed September 16, 2014).

Share This



More Space & Time News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

East Coast Treated To Rare Meteor Sighting

East Coast Treated To Rare Meteor Sighting

Newsy (Sep. 16, 2014) — Numerous residents along the East Coast reported seeing a bright meteor flash through the sky Sunday night. Video provided by Newsy
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
NASA’s Curiosity Rover Finally Reaches Long-Term Goal

NASA’s Curiosity Rover Finally Reaches Long-Term Goal

Newsy (Sep. 15, 2014) — After more than two years, NASA’s Mars Curiosity Rover reached Mount Sharp, its long-term destination. Video provided by Newsy
Powered by NewsLook.com
SpaceX's Elon Musk Really Wants To Colonize Mars

SpaceX's Elon Musk Really Wants To Colonize Mars

Newsy (Sep. 14, 2014) — Elon Musk has been talking about his goal of colonizing Mars for years now, but how much of it does he actually have figured out, and is it possible? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins