Featured Research

from universities, journals, and other organizations

Astrophysical Fluid Mechanics: A New Method For Simulating Supersonic Turbulence

Date:
May 7, 2008
Source:
CSC - Finnish IT Centre for Science
Summary:
Scientists have developed a new method for simulating turbulent fluids, which will open up new perspectives in the field of astrophysics. Turbulence is worth studying, because of the fundamental role that it plays in astrophysics. Turbulence is frequently modelled by Large Eddy Simulations (LES), where the dynamics of turbulent eddies are computed on large scales, while a subgrid scale model approximates the influence of smaller eddies. In astrophysics the LES approach is challenged, because gravity and thermal processes break the scale-invariance employed in LES over a wide range of scales.

Using DEISA’s computational resources within the DECI framework, the FEARLESS project team has developed a new method for simulating turbulent fluids, which will open up new perspectives in the field of astrophysics.

Turbulence is worth studying, because of the fundamental role that it plays in astrophysics. Turbulence is frequently modelled by Large Eddy Simulations (LES), where the dynamics of turbulent eddies are computed on large scales, while a subgrid scale model approximates the influence of smaller eddies. In astrophysics the LES approach is challenged, because gravity and thermal processes break the scale-invariance employed in LES over a wide range of scales.

In order to overcome this problem a method called Adaptive Mesh Refinement (AMR) can be used. AMR involves inserting computational grids of higher resolution into turbulent flow regions in which strong shock fronts are forming, and the gas is undergoing a process of gravitational collapse.

However, due to the extreme range of different length scales it is generally impossible to treat fully developed turbulence by means of AMR only. This would require too large a number of refined grids. For this reason, the FEARLESS team has developed a new method that combines AMR with a subgrid scale model that links the notions of AMR and LES.

“FEARLESS stands for Fluid mEchanis with Adaptively Refine Large Eddy SimulationS“, says Wolfram Schmidt, one of the two architects of the FEARLESS project. “This somewhat complicated title captures the major elements of our concept: We intend to carry out simulations of turbulent fluids using a method that adapts dynamically to the simulated flow by refining the computation in those regions in which turbulence is developing“, he explains.

Supercomputing resources are very much required in order to apply this method and the DEISA infrastructure has played an important role in the development of the project.

Results from these simulations are significant for ongoing research into the nature of turbulence in star-forming gas clouds in the Galaxy. The project team expects that FEARLESS will generate new perspectives in astrophysics through the as yet unrivalled levels of sophistication it achieves in the treatment of turbulence.

The FEARLESS project was initiated in 2005 by Jens Niemeyer and Wolfram Schmidt, two astrophysicists from the University of Würzburg in Germany.


Story Source:

The above story is based on materials provided by CSC - Finnish IT Centre for Science. Note: Materials may be edited for content and length.


Cite This Page:

CSC - Finnish IT Centre for Science. "Astrophysical Fluid Mechanics: A New Method For Simulating Supersonic Turbulence." ScienceDaily. ScienceDaily, 7 May 2008. <www.sciencedaily.com/releases/2008/05/080506115826.htm>.
CSC - Finnish IT Centre for Science. (2008, May 7). Astrophysical Fluid Mechanics: A New Method For Simulating Supersonic Turbulence. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2008/05/080506115826.htm
CSC - Finnish IT Centre for Science. "Astrophysical Fluid Mechanics: A New Method For Simulating Supersonic Turbulence." ScienceDaily. www.sciencedaily.com/releases/2008/05/080506115826.htm (accessed April 17, 2014).

Share This



More Computers & Math News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

TheStreet (Apr. 16, 2014) — The social media data space is likely to see more mergers and acquisitions following Twitter Inc.'s acquisition of tweet analyzer Gnip Inc. on Tuesday and Apples Inc.'s purchase of Topsy Labs Inc. back in December. One firm in particular, the U.K.'s DataSift Inc., could be on the list of potential buyers. Among other social media startups that could be ripe for picking is Banjo, whose mobile app provides aggregated content by topic and location. Banjo could also be a good fit for Twitter. Video provided by TheStreet
Powered by NewsLook.com
Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

TheStreet (Apr. 16, 2014) — Bitcoin exchange Mt. Gox has agreed to liquidate after a Japanese court rejected its plans to rebuild, according to a report by the Wall Street Journal. Mt. Gox filed for bankruptcy protection in February after announcing about 850,000 bitcoins, worth around $454 million at today's rates, may have been stolen by hackers. It has since recovered 200,000 of the missing bitcoins. The court put Mt. Gox's assets under a provisional administrator's control until bankruptcy proceedings begin. Video provided by TheStreet
Powered by NewsLook.com
BlackBerry: The Crash That Launched 1,000 Startups

BlackBerry: The Crash That Launched 1,000 Startups

Reuters - Business Video Online (Apr. 16, 2014) — Tech startups in BlackBerry's hometown of Waterloo, Ontario, are tapping talent from the struggling smartphone company and filling the void left in the region by its meltdown. Reuters correspondent Euan Rocha visits the region that could become Canada's Silicon Valley. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins