Featured Research

from universities, journals, and other organizations

Method For Integrating Nanowire Devices Directly Onto Silicon Developed

Date:
May 11, 2008
Source:
Harvard University
Summary:
Scientists have developed a new technique for fabricating nanowire photonic and electronic integrated circuits that may one day be suitable for high-volume commercial production. The fabrication technique could yield low-cost, scalable nanowire photonic and electronic circuits.

The basic structure of the nanowire devices is based on a sandwich geometry in which a nanowire (n-type zinc oxide) is placed between the substrate (heavily doped p-type silicon) and a top metallic contact, using spin-on glass as an insulating spacer layer to prevent the metal contact from shorting to the substrate (as shown in (a) and (b)). This allows for uniform injection of current along the length of the nanowire. A finished wafer using the team’s method is shown in (c), with a typical device shown in (d). Note that a stray nanowire intercepts the device on the upper part of (d). The oval feature surrounding the stray nanowire is due to the varying thickness of the spin-on glass film. When a voltage is applied to this device, it emits ultraviolet light (as shown in image (e) obtained with a CCD camera) with a peak wavelength of ~380 nm.
Credit: Image courtesy of Harvard School of Engineering and Applied Sciences

Applied scientists at Harvard University in collaboration with researchers from the German universities of Jena, Gottingen, and Bremen, have developed a new technique for fabricating nanowire photonic and electronic integrated circuits that may one day be suitable for high-volume commercial production.

Spearheaded by graduate student Mariano Zimmler and Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, both of Harvard's School of Engineering and Applied Sciences (SEAS), and Prof. Carsten Ronning of the University of Jena, the findings will be published in Nano Letters. The researchers have filed for U.S. patents covering their invention.

While semiconductor nanowires---rods with an approximate diameter of one-thousandth the width of a human hair---can be easily synthesized in large quantities using inexpensive chemical methods, reliable and controlled strategies for assembling them into functional circuits have posed a major challenge. By incorporating spin-on glass technology, used in Silicon integrated circuits manufacturing, and photolithography, transferring a circuit pattern onto a substrate with light, the team demonstrated a reproducible, high-volume, and low-cost fabrication method for integrating nanowire devices directly onto silicon.

"Because our fabrication technique is independent of the geometrical arrangement of the nanowires on the substrate, we envision further combining the process with one of the several methods already developed for the controlled placement and alignment of nanowires over large areas," said Capasso. "We believe the marriage of these processes will soon provide the necessary control to enable integrated nanowire photonic circuits in a standard manufacturing setting."

The structure of the team's nanowire devices is based on a sandwich geometry: a nanowire is placed between the highly conductive substrate, which functions as a common bottom contact, and a top metallic contact, using spin-on glass as a spacer layer to prevent the metal contact from shorting to the substrate. As a result current can be uniformly injected along the length of the nanowires. These devices can then function as light-emitting diodes, with the color of light determined by the type of semiconductor nanowire used.

To demonstrate the potential scalability of their technique, the team fabricated hundreds of nanoscale ultraviolet light-emitting diodes by using zinc oxide nanowires on a silicon wafer. More broadly, because nanowires can be made of materials commonly used in electronics and photonics, they hold great promise for integrating efficient light emitters, from ultraviolet to infrared, with silicon technology. The team plans to further refine their novel method with an aim towards electrically contacting nanowires over entire wafers.

"Such an advance could lead to the development of a completely new class of integrated circuits, such as large arrays of ultra-small nanoscale lasers that could be designed as high-density optical interconnects or be used for on-chip chemical sensing," said Ronning.

The team's co-authors are postdoctoral fellow Wei Yi and Venkatesh Narayanamurti, John A. and Elizabeth S. Armstrong Professor and dean, both of Harvard's School of Engineering and Applied Sciences; graduate student Daniel Stichtenoth, University of Gottingen; and postdoctoral fellow Tobias Voss, University of Bremen.

The research was supported by the National Science Foundation (NSF) and the German Research Foundation. The authors also acknowledge the support of two Harvard-based centers, the National Science Foundation Nanoscale Science and Engineering Center (NSEC) and the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN).


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Cite This Page:

Harvard University. "Method For Integrating Nanowire Devices Directly Onto Silicon Developed." ScienceDaily. ScienceDaily, 11 May 2008. <www.sciencedaily.com/releases/2008/05/080508164412.htm>.
Harvard University. (2008, May 11). Method For Integrating Nanowire Devices Directly Onto Silicon Developed. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2008/05/080508164412.htm
Harvard University. "Method For Integrating Nanowire Devices Directly Onto Silicon Developed." ScienceDaily. www.sciencedaily.com/releases/2008/05/080508164412.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins