Featured Research

from universities, journals, and other organizations

Massive Star In Nearby Galaxy Has Mammoth Belt

Date:
May 28, 2008
Source:
ESO
Summary:
Talk about a diet! By resolving, for the first time, features of an individual star in a neighboring galaxy, ESO's VLT has allowed astronomers to determine that it weighs almost half of what was previously thought, thereby solving the mystery of its existence. The behemoth star is found to be surrounded by a massive and thick torus of gas and dust, and is most likely experiencing unstable, violent mass loss.

The position of the supergiant star WOH G64 in the Large Magellanic Cloud, one of the Milky Way's neighbouring galaxies, is shown in this Spitzer image (left). On the right, an artist's impression is provided of the thick, massive torus of matter surrounding the star as inferred from observations made with ESO's Very Large Telescope Interferometer. This is the first time that MIDI resolves an individual star in a neighbouring galaxy.
Credit: ESO

Talk about a diet! By resolving, for the first time, features of an individual star in a neighbouring galaxy, ESO's VLT has allowed astronomers to determine that it weighs almost half of what was previously thought, thereby solving the mystery of its existence. The behemoth star is found to be surrounded by a massive and thick torus of gas and dust, and is most likely experiencing unstable, violent mass loss.

Related Articles


WOH G64 is a red supergiant star almost 2 000 times as large as our Sun and is located 163 000 light-years away in the Large Magellanic Cloud, one of the Milky Way's satellite galaxies.

"Previous estimates gave an initial mass of 40 times the mass of the Sun to WOH G64. But this was a real problem as it was way too cold, compared to what theoretical models predict for such a massive star. Its existence couldn't be explained," says Keiichi Ohnaka, who led the work on this object.

New observations, made with ESO's Very Large Telescope Interferometer, conclude that the gas and dust around the star is arranged in a thick ring, rather than a spherical shell, and the star is thus less hidden than had been assumed. This implies that the object is in fact half as luminous as previously thought, and thus, less massive. The astronomers infer that the star started its life with a mass of 25 solar masses. For such a star, the observed temperature is closer to what one would expect.

"Still, the characteristics of the star mean that it may be experiencing a very unstable phase accompanied by heavy mass loss," says co-author Markus Wittkowski from ESO. "We estimate that the belt of gas and dust that surrounds it contains between 3 and 9 solar masses, which means that the star has already lost between one tenth and a third of its initial mass."

To reach this conclusion, the team of astronomers used the MIDI instrument to combine the light collected by three pairs of 8.2-m Unit Telescopes of the VLT. This is the first time that MIDI has been used to study an individual star outside our Galaxy.

The observations allowed the astronomers to clearly resolve the star. Comparisons with models led them to conclude that the star is surrounded by a gigantic, thick torus, expanding from about 15 stellar radii (or 120 times the distance between the Earth and the Sun - 120 AU!) to more than 250 stellar radii (or 30 000 AU!).

"Everything is huge about this system. The star itself is so big that it would fill almost all the space between the Sun and the orbit of Saturn," says Ohnaka. "And the torus that surrounds it is perhaps a light-year across! Still, because it is so far away, only the power of interferometry with the VLT could give us a glimpse on this object. "

The name WOH G64, refers to the fact that it is the 64th entry in the catalogue by Westerlund, Olander, and Hedin, published in 1981, and based on observations made at ESO La Silla.

The team is comprised of K. Ohnaka, T. Driebe, K.-H. Hofmann, G. Weigelt (Max-Planck Institute for Radio Astronomy, Bonn, Germany), and M. Wittkowski (ESO).


Story Source:

The above story is based on materials provided by ESO. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ohnaka et al. Spatially resolved dusty torus toward the red supergiant WHO G64 in the Large Magellanic Cloud. Astronomy and Astrophysics, 2008; 484 (2): 371 DOI: 10.1051/0004-6361:200809469

Cite This Page:

ESO. "Massive Star In Nearby Galaxy Has Mammoth Belt." ScienceDaily. ScienceDaily, 28 May 2008. <www.sciencedaily.com/releases/2008/05/080527110944.htm>.
ESO. (2008, May 28). Massive Star In Nearby Galaxy Has Mammoth Belt. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2008/05/080527110944.htm
ESO. "Massive Star In Nearby Galaxy Has Mammoth Belt." ScienceDaily. www.sciencedaily.com/releases/2008/05/080527110944.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Space & Time News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hubble Sees Rare 'Einstein Cross' Image Of Distant Supernova

Hubble Sees Rare 'Einstein Cross' Image Of Distant Supernova

Newsy (Mar. 5, 2015) — A rare trick of the light caused by the gravity of a distant galaxy caused Hubble to see four images of the same supernova at once. Video provided by Newsy
Powered by NewsLook.com
What's Up March 2015

What's Up March 2015

NASA (Mar. 4, 2015) — A total solar eclipse in the North Atlantic and tips to prepare for the next U.S. eclipse. Video provided by NASA
Powered by NewsLook.com
Raw: SpaceX Launches Rocket, Satellites on Board

Raw: SpaceX Launches Rocket, Satellites on Board

AP (Mar. 2, 2015) — SpaceX launched it&apos;s 16th Falcon 9 rocket from Cape Canaveral, Florida on Sunday night. The rocket was carrying two commercial communications satellites. (March 2) Video provided by AP
Powered by NewsLook.com
NASA EDGE: SMAP Launch

NASA EDGE: SMAP Launch

NASA (Mar. 2, 2015) — Join NASA EDGE as they cover the launch of the Soil Moisture Active Passive (SMAP) spacecraft live from Vandenberg Air Force Base.  Special guests include NASA Administrator Charlie Bolden, SMAP Project System Engineer Shawn Goodman and Lt Col Brande Walton and Joseph Sims from the Air Force.  No word on the Co-Host&apos;s whereabouts. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins