Featured Research

from universities, journals, and other organizations

Computer Scientists Devise A 'P4P' System For Efficient Internet Usage

Date:
May 30, 2008
Source:
Yale University
Summary:
A Yale research team has engineered a system with the potential for making the Internet work more efficiently, in which Internet Service Providers and Peer-to-Peer software providers can work cooperatively to deliver data.

Data distribution under traditional, P2P and P4P architecture.
Credit: Courtesy of Doug Pasko and Laird Popkin

A Yale research team has engineered a system with the potential for making the Internet work more efficiently, in which Internet Service Providers (ISPs) and Peer-to-Peer (P2P) software providers can work cooperatively to deliver data.

The way people use the Internet has changed significantly over the past 10 years, making computers seem to run less efficiently and putting strain on the available bandwidth for transmitting data.

Since 1998, the percentage of Internet traffic devoted to the download and upload of large blocks of information using P2P software has increased from less than 10 percent to greater than 70 percent in many networks. By contrast, Web browsing now accounts for 20 percent and e-mail less than 5 percent of total Internet traffic, down from 60 and 10 percent respectively, in 1998.

Professors Avi Silberschatz, Y. Richard Yang, and Ph.D. candidate Haiyong Xie in Yale's Department of Computer Science are part of a research team that is proposing an architecture called P4P -- which stands for "provider portal for P2P applications" -- to allow explicit and seamless communications between ISPs and P2P applications.

The P4P will both reduce the cost to ISPs and improve the performance of P2P applications according to a paper to be presented at ACM SIGCOMM 2008, a premier computer networking conference in August 2008 in Seattle.

According to Silberschatz, current P2P information exchange schemes are "network-oblivious" and use intricate protocols for tapping the bandwidth of participating users to help move data. He says, "The existing schemes are often both inefficient and costly -- like dialing long-distance to call your neighbor, and both of you paying for the call."

The Yale team has played many roles in this project, ranging from naming and analyzing the architecture, to testing and to implementation of some key components of the system.

"Right now the ISPs and P2P companies are dancing with the problem -- but stepping on each other's toes," said Yang. "Our objective is to have an open architecture that any ISP and any P2P can participate in. Yale has facilitated this project behind the scenes and without direct financial interest through a working group called P4P that was formed in July 2007 to prompt collaboration on the project."

The working group is hosted by DCIA [Distributed Computing Industry Association] and led by working group co-chairs Doug Pasko from Verizon, and Laird Popkin from Pando. Currently, the group has more than 50 participating organizations.

"The P4P architecture extends the Internet architecture by providing servers, called iTrackers, to each ISP," said Silberschatz. "The servers provide portals to the operation of ISP networks."

The new P4P architecture can operate in multiple modes. In a simple mode, the ISPs will reveal their network status so that P2P applications can avoid hot-spots. In another mode, P4P will operate much like a stock or commodities exchange -- it will let markets and providers interact freely to create the most efficient information and cost flow, so costs of operation drop and access to individual sites is less likely to overload.

"While ISPs like AT&T, Comcast, Telephonica and Verizon and the P2P software companies like Pando each maintains its independence, the value of the P4P architecture is significant, as demonstrated in recent field tests," said Silberschatz. For example, in a field test conducted using the Pando software in March 2008, P4P reduced inter-ISP traffic by an average of 34 percent, and increased delivery speeds to end users by up to 235 percent across US networks and up to 898 percent across international networks.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "Computer Scientists Devise A 'P4P' System For Efficient Internet Usage." ScienceDaily. ScienceDaily, 30 May 2008. <www.sciencedaily.com/releases/2008/05/080527155517.htm>.
Yale University. (2008, May 30). Computer Scientists Devise A 'P4P' System For Efficient Internet Usage. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2008/05/080527155517.htm
Yale University. "Computer Scientists Devise A 'P4P' System For Efficient Internet Usage." ScienceDaily. www.sciencedaily.com/releases/2008/05/080527155517.htm (accessed October 22, 2014).

Share This



More Computers & Math News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins