Featured Research

from universities, journals, and other organizations

Stripes Instead Of Layers: Miniaturizing Magnetic Sensors By Means Of Ion Technology

Date:
June 14, 2008
Source:
Forschungszentrum Dresden Rossendorf
Summary:
Due to the enormous progress in fabrication and characterization techniques, novel magnetic materials have been widely applied, for instance as magnetic sensors in cars (angle or position sensors). Magnetic sensors are made of thin layers with different magnetic properties. With the help of ion technology, scientists were now able to shrink these multilayer systems down to one layer, retaining their magnetic properties. This discovery could make magnetic sensors even more powerful.

False-color image of magnetization configuration of the stripe structure during the process of magnetization reversal. In principal, the magnetization can take on four different values, marked by corresponding arrows (non-irradiated area: red, blue, irradiated area: yellow, green).
Credit: Courtesy of Wiley WILEY-VCH Verlag GmbH & Co.KGaA

Due to the enormous progress in fabrication and characterization techniques, novel magnetic materials have been widely applied, for instance as magnetic sensors in cars (angle or position sensors). Magnetic sensors are made of thin layers with different magnetic properties. With the help of ion technology, scientists from Dresden were now able to shrink these multilayer systems down to one layer, retaining their magnetic properties. This discovery could make magnetic sensors even more powerful. The results have recently been published in the journal Advanced Materials.

Related Articles


Progressive miniaturization is an important driving force for technological progress. Nowadays, magnetic multilayer systems for magnetic sensors are comprised of individual films, which are often only a few atomic layers thick. Scientists from the Leibniz Institute of Solid State and Materials Research (IFW) Dresden and from the Forschungszentrum Dresden-Rossendorf (FZD) picked up the well-known fact that it is not sufficient to reduce the thickness of the individual layers to miniaturize these systems. Instead of using multilayer systems a promising alternative is to combine the magnetic properties of the different layer materials within a single film. This goal has now been achieved by scientists from Dresden who produced an ultra-thin striped layer.

Traditional multilayer systems are made up of single layers consisting of hard magnetic and soft magnetic materials. Hard magnetic materials exhibit a stable magnetic configuration whereas the magnetization direction of soft magnetic materials can be easily controlled and thus reversed by applying a magnetic field. This effect is for instance used when magnetically stored data are read out by the read heads of hard disks. Read heads are in a way comparable to magnetic sensors like in cars or in other everyday applications, e. g. rotation controllers in hi-fi systems. Ultra-thin magnetic layer systems go back to the discovery of the giant magneto resistance effect (GMR) in ultra-thin magnetic films, for which Peter Grόnberg and Albert Fert were awarded the Nobel prize last year.

In order to further miniaturize magnetic devices, intelligent combination of both hard magnetic and soft magnetic properties is essential. Researchers from FZD and IFW Dresden could now demonstrate for the first time that both material properties can be generated in a single film – in contrast to multilayer structures – by means of ion implantation on a micrometer scale. When observed from the top, the new structure shows a stripe pattern. The scientists found out that even in a single magnetic film the borders between both materials – also called domain walls – influence the magnetization reversal behavior. This discovery might enable more powerful magnetic sensors.

The new technology also opens up a route to imaging the domain walls by means of optical microscopy. In addition, the magnetization reversal behavior can be investigated as a whole and correlated to the magnetic domain configuration. In the near future, the scientists want to approach the nanometer regime in order to investigate the emerging physical effects at the largest level of miniaturization. Dr. Jόrgen Fassbender, physicist at the FZD, explains: “We expect that at a certain feature size completely new effects arise.”


Story Source:

The above story is based on materials provided by Forschungszentrum Dresden Rossendorf. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. McCord, L. Schultz, J. Fassbender. Hybrid soft-magnetic lateral exchange spring films created by ion irradiation. Advanced Materials, 11/2008 DOI: 10.1002/adma.200700623

Cite This Page:

Forschungszentrum Dresden Rossendorf. "Stripes Instead Of Layers: Miniaturizing Magnetic Sensors By Means Of Ion Technology." ScienceDaily. ScienceDaily, 14 June 2008. <www.sciencedaily.com/releases/2008/06/080606125530.htm>.
Forschungszentrum Dresden Rossendorf. (2008, June 14). Stripes Instead Of Layers: Miniaturizing Magnetic Sensors By Means Of Ion Technology. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2008/06/080606125530.htm
Forschungszentrum Dresden Rossendorf. "Stripes Instead Of Layers: Miniaturizing Magnetic Sensors By Means Of Ion Technology." ScienceDaily. www.sciencedaily.com/releases/2008/06/080606125530.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) — Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) — A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) — Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins