Featured Research

from universities, journals, and other organizations

Key Regulator Of DNA Mutations Identified

Date:
June 12, 2008
Source:
Rockefeller University
Summary:
As a general rule, your DNA is not something you want rearranged. But there are exceptions -- especially when it comes to fighting infections. Since the number of microbes in the world far surpasses the amount of human DNA dedicated to combat them, specialized cells in the immune system have adopted an ingenious, if potentially disastrous, strategy for making antibodies. These cells, called B lymphocytes, intentionally mutate their own DNA to ward off invaders they have never seen before.

As a general rule, your DNA is not something you want rearranged. But there are exceptions – especially when it comes to fighting infections. Since the number of microbes in the world far surpasses the amount of human DNA dedicated to combat them, specialized cells in the immune system have adopted an ingenious, if potentially disastrous, strategy for making antibodies. These cells, called B lymphocytes, intentionally mutate their own DNA to ward off invaders they have never seen before.

Related Articles


Now, Rockefeller University scientists F. Nina Papavasiliou and Michel C. Nussenzweig have independently identified a tiny molecule that directly binds to and curbs the production of this potent gene mutator, an enzyme called AID. By tightly controlling levels of AID, this molecule, known as microRNA-155, stands between two opposing bastions of health: an immune system that can ward off an ever-growing legion of infectious microbes and one that can send the body down the road to some of the most aggressive and lethal forms of cancer — leukemia and B cell lymphomas.

The findings of both papers, reported back-to-back in the May 16 issue of Immunity, define a new role for miR-155. In the past, it has been implicated in the onset and development of cancer. Now, this research suggests that when it specifically binds to AID, it can potentially thwart it. “We used a different approach and different tools, yet we said the same things and reached the same conclusions,” says Papavasiliou, head of the Laboratory of Lymphocyte Biology. “It’s pretty powerful stuff.”

In B lymphocytes, AID specifically targets a small strip of DNA that encodes an antibody molecule. When AID mutates this DNA segment even slightly the altered gene can either give rise to an antibody that binds to a different invader or one that clings tighter to its original target, maximizing the chance that it will be effective. By regulating how much AID is present in these cells, miR-155 helps ensure that there is just enough AID to only mutate this strip of DNA.

But there’s a catch, explains Grace Teng, a graduate student in the Papavasiliou lab. She found that while too little AID impairs the immune system’s ability to fight infections, too much AID produces neither a more diverse nor a more effective repertoire of antibodies to keep invaders at bay. Instead, excess levels of the enzyme cause pieces of the antibody genes to swap places with other genes on different chromosomes. This process, called translocation, doesn’t always lead to cancer, but it is a hallmark of the disease.

“So what’s clear from this work is that when you overexpress AID, it doesn’t generate more mutations to make better antibodies,” says Papavasiliou. “It is shunted into a translocation pathway.”

When graduate student Yair Dorsett and postdoc Kevin McBride, both members of the Nussenzweig lab, either looked at mice in which miR-155 couldn’t attach to AID (the team altered AID’s binding site) or mice that couldn’t produce miR-155 at all, they, like the Papavasiliou team, didn’t find a notable rise in mutations. Rather, they found up to a fifteen percent increase in a translocation pathway whereby the oncogene c-myc breaks off from its designated spot and migrates to the strip of antibody-encoding DNA. The vigorous gene activity that occurs in this region can ramp up the oncogene’s expression and lead to a highly aggressive cancer known as Burkitt’s lymphoma.

Although other lymphomas have been found to overexpress miR-155, Burkitt’s lymphoma lacks the expression of it. Without miR-155, high, unregulated levels of AID could generate the translocations that can send a B lymphocyte down the road to cancer. “Cells from different kinds of lymphomas all have their distinct signatures,” says Dorsett. “So understanding miR-155’s role in the genesis of these diseases may help us understand the differences between them.”


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal References:

  1. TENG et al. MicroRNA-155 Is a Negative Regulator of Activation-Induced Cytidine Deaminase. Immunity, 2008; 28 (5): 621 DOI: 10.1016/j.immuni.2008.03.015
  2. DORSETT et al. MicroRNA-155 Suppresses Activation-Induced Cytidine Deaminase-Mediated Myc-Igh Translocation. Immunity, 2008; 28 (5): 630 DOI: 10.1016/j.immuni.2008.04.002

Cite This Page:

Rockefeller University. "Key Regulator Of DNA Mutations Identified." ScienceDaily. ScienceDaily, 12 June 2008. <www.sciencedaily.com/releases/2008/06/080612075846.htm>.
Rockefeller University. (2008, June 12). Key Regulator Of DNA Mutations Identified. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2008/06/080612075846.htm
Rockefeller University. "Key Regulator Of DNA Mutations Identified." ScienceDaily. www.sciencedaily.com/releases/2008/06/080612075846.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com
Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Despite Rising Death Toll, Many Survive Ebola

Despite Rising Death Toll, Many Survive Ebola

AP (Oct. 23, 2014) The family of a Dallas nurse infected with Ebola in the US says doctors can no longer detect the virus in her. Despite the mounting death toll in West Africa, there are survivors there too. (Oct. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins