Featured Research

from universities, journals, and other organizations

Promising Step Towards More Effective Hydrogen Storage

Date:
June 18, 2008
Source:
Uppsala University
Summary:
Scientists have demonstrated an atomistic mechanism of hydrogen release in magnesium nanoparticles -- a potential hydrogen storage material.

An international research team led by Swedish Professor Rajeev Ahuja, Uppsala University, has demonstrated an atomistic mechanism of hydrogen release in magnesium nanoparticles -- a potential hydrogen storage material.

It is becoming clear that cars of the future will have to move from using the combination of petrol and a combustion engine in order to combat global warming and potential oil shortages. One of the prime candidate technologies are fuel cells using hydrogen gas as fuel, chiefly because hydrogen is among the most abundant elements on earth and is able of producing energy through chemical reactions with oxygen in the fuel cells releasing only water - an environmentally benign by-product. Storing hydrogen gas in a compact way is, however, still an unsolved problem.

Much research effort has been directed at absorbing hydrogen in metal powders, forming so-called metal hydrides. Magnesium may absorb up to 7.7 weight per cent of hydrogen, and has commonly been studied for this purpose, especially since fast loading and unloading of hydrogen can be accomplished by adding catalysts like iron and nickel particles.

It has been speculated that the catalysts act as shuttles, helping to transport hydrogen out of the material. With the help of computer simulations of magnesium clusters at the quantum mechanical level, the Uppsala researchers and their colleagues have now been able to show in atomic scale how this happens and why only a small amount of catalysts are necessary to improve the hydrogen release. The extensive simulations were performed at Uppsala University's Multidisciplinary Center for Advanced Computational Science (UPPMAX).

"We expect the findings to aid further technical improvements of magnesium-based hydrogen storage materials, as well as other related light metal hydrides," says Professor Raajev Ahuja.


Story Source:

The above story is based on materials provided by Uppsala University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Larsson et al. Role of catalysts in dehydrogenation of MgH2 nanoclusters. Proceedings of the National Academy of Sciences, 2008; DOI: 10.1073/pnas.0711743105

Cite This Page:

Uppsala University. "Promising Step Towards More Effective Hydrogen Storage." ScienceDaily. ScienceDaily, 18 June 2008. <www.sciencedaily.com/releases/2008/06/080616115724.htm>.
Uppsala University. (2008, June 18). Promising Step Towards More Effective Hydrogen Storage. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2008/06/080616115724.htm
Uppsala University. "Promising Step Towards More Effective Hydrogen Storage." ScienceDaily. www.sciencedaily.com/releases/2008/06/080616115724.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins